Color-Causing Mechanisms of Guatemala Jadeite Jade: Constraints from Spectroscopy and Chemical Compositions
Abstract
:1. Introduction
2. Geological Background
3. Sampling and Methods
3.1. Sampling
3.2. Analytical Methods
3.2.1. Fourier Transform Infrared Spectroscopy (FTIR)
3.2.2. Laser Raman Spectroscopy
3.2.3. UV-Visible Spectroscopy (UV-Vis)
3.2.4. X-ray Fluorescence Spectroscopy (XRF)
3.2.5. Electronic Probe Micro-Analysis (EPMA)
4. Results and Discussion
4.1. Petrographic Analysis
4.2. FTIR Analysis
4.3. Raman Spectrum Analysis
4.4. UV-Vis Analysis
4.5. XRF Analysis
4.6. Mineral Chemistry
5. Conclusions
- (1)
- The main mineral components of Guatemala jadeite jade are jadeite, omphacite, and minor albite.
- (2)
- The green color of Guatemala jadeite jade, mainly composed of jadeite, is caused by the electronic transition between bands of Fe3+. Fe content is proportional to the change of color in a particular range.
- (3)
- The gray characteristics of the gray-green jadeite jade are related to Fe2+ and clay minerals. The black jadeite jade shows a black color due to the internal jadeite and metal mineral inclusions but appear green under transmitted light. The color of jadeite jade, mainly composed of omphacite, is generally attributed to Cr3+ and Fe3+, among which the blue features of blue-green jadeite jade are attributed to the presence of Fe2+ and Mn2+.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hargett, D. Jadeite of Guatemala: A contemporary view. Gems Gemol. 1990, 26, 134–141. [Google Scholar] [CrossRef]
- Foshag, W.F. Mineralogical studies on Guatemalan jade. In Smithsonian Miscellaneous Collections; The Smithsonian Institution: Washington, DC, USA, 1957; Volume 135, pp. 15–17. [Google Scholar]
- Rossman, G.R. Lavender jade. The optical spectrum of Fe3+ and Fe2+→Fe3+ intervalence charge transfer in jadeite from Burma. Am. Mineral 1974, 59, 868–870. [Google Scholar]
- Coccato, A.; Karampelas, S.; Wörle, M.; Van Willigend, S.; Pétrequin, P. Gem quality and archeological green ‘jadeite jade’ versus ‘omphacite jade’. J. Raman Spectrosc. 2014, 45, 11–12. [Google Scholar] [CrossRef]
- Ng, Y.N. Description, comparison and discussion of trace element characteristics in jadeitites from Myanmar and Guatemala. China Univ. Geosci. 2015. (In Chinese with English abstract). [Google Scholar]
- Harder, H. Trace elements as colouring agents in jadeites. J. Gemmol. 1995, 24, 508–511. [Google Scholar] [CrossRef]
- Gendron, F.; Smith, D.C.; Masson, P.; Rodríguez Martínez, M.D.C.; Ortiz Ceballos, P. Portable Raman verification and quantification of jade in Olmec ceremonial axes from El Manatí, Veracruz, Mexico. J. Raman Spectrosc. 2017, 48, 1618–1632. [Google Scholar] [CrossRef]
- Harlow, G.E.; Rossman, G.R.; Matsubara, S.; Miyajima, H. Blue omphacite in jadeitites from Guatemala and Japan. Seattle (Washington).Geological Society of America. Abstr. Programs 2003, 6, 254. [Google Scholar]
- Xing, B.Q.; Shi, G.H.; Long, T.F.; Shi, M.Y. Locality determination of inky black omphacite jades from Myanmar and Guatemala by nondestructive analysis. J. Raman Spectrosc. 2022, 53, 2009–2018. [Google Scholar] [CrossRef]
- Shinno, I.; Oba, T. Absorption and photo-luminescence spectra of Ti3+ and Fe3+ in jadeites. J. Miner. 1993, 16, 378–386. [Google Scholar] [CrossRef]
- Burns, R.G. Mineralogical Applications of Crystal Field Theory, 2nd ed.; Cambridge University Press: New York, NY, USA, 1993; pp. 87–92. [Google Scholar]
- Finch, R.C.; Dengo, G. NOAM-CARIB Plate Boundary in Guatemala: A Cretaceous Suture Zone Reactivated as a Neogene Transform Fault. Dallas Geol. Soc. 1990, 1–45. [Google Scholar]
- Tsujimori, T.; Liou, J.G.; Coleman, R.G. Coexisting retrograde jadeite and omphacite in a jadeite-bearing lawsonite eclogite from the Motagua Fault Zone, Guatemala. Am. Mineral. 2005, 90, 836–842. [Google Scholar] [CrossRef]
- Burkart, B. Neogene north American-Caribbean plate boundary across Northern Central America: Offset along the polochic fault. Tectonophysics 1983, 99, 251–270. [Google Scholar] [CrossRef]
- Harlow, G.E.; Sisson, V.B.; Lallemant HG, A.; Sorensen, S.S.; Seitz, R. High pressure metasomatic rocks along the Motagua fault zone. Ofioliti 2003, 2, 115–120. [Google Scholar]
- Harlow, G.E.; Sisson, V.B.; Sorensen, S.S. Jadeitite from Guatemala: New observations and distinctions among multiple occurrences. Geol. Acta 2011, 9, 363–387. [Google Scholar]
- Harlow, G.E.; Tsujimori, T.; Sorensen, S.S. Jadeitites and Plate Tectonics. Annu. Rev. Earth Planet. Sci. 2014, 43, 105–138. [Google Scholar] [CrossRef]
- Johnson, C.A.; Harlow, G.E. Guatemala jadeitites and albitites were formed by deuterium-rich serpentinizing fluids deep within a subduction zone. Geology 1999, 7, 629–632. [Google Scholar] [CrossRef]
- Sorensen, S. The origin of jadeitite-forming subduction-zone fluids: CL-guided SIMS oxygen-isotope and trace-elementevidence. Am. Mineral. 2006, 7, 979–996. [Google Scholar] [CrossRef]
- Tsujimori, T.; Harlow, G.E. Petrogenetic relationships between jadeitite and associated high-pressure and low-temperature metamorphic rocks in worldwide jadeitite localities: A review. Eur. J. Mineral. 2012, 2, 371–390. [Google Scholar] [CrossRef]
- Wang, Y.J.; Shi, B.; Yuan, X.Q.; Pei, L.; Chen, T.; Xie, X.L. The Impacts of the Variation of Myanmar Jade Component on ItsInfrared Spectroscopy. Spectrosc. Spectr. Anal. 2015, 8, 2094–2098, (In Chinese with English abstract). [Google Scholar]
- François, G.; David, C.S.; Aïcha, G.B. Discovery of Jadeite-Jade in Guatemala Confirmed by Non-Destructive Raman Microscopy. J. Archaeol. Sci. 2022, 8, 837–851. [Google Scholar]
- Zhang, Y.; Shi, G.H. Origin of Blue-Water Jadeite Jades from Myanmar and Guatemala: Differentiation by Non-Destructive Spectroscopic Techniques. Crystals 2022, 10, 1448. [Google Scholar] [CrossRef]
- Shi, G.H.; Stöckhert, B.; Cui, W.Y. Kosmochlor and chromian jadeite aggregates from the Myanmar jadeitite area. Miner. Mag. 2005, 69, 1059–1075. [Google Scholar] [CrossRef]
- Chen, Q.L.; Yin, Z.W.; Bu, Y.W.; Zhong, Z.Q. Raman Spectroscopy Study on the Mineral Composition of the Guatemalan Jade. Spectrosc. Spectr. Anal. 2012, 32, 2447–2451. [Google Scholar]
- Manrique-Ortega, M.D.; Mitrani, A.; Casanova-González, E.; Jiménez-Galindo, L.A.; Ruvalcaba-Sil, J.L. Methodology for the non-destructive characterization of jadeite-jade for archaeological studies. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 217, 294–309. [Google Scholar] [CrossRef] [PubMed]
- Morimoto, N. Nomenclature of pyroxenes. Mineral. Petrol. 1988, 39, 55–76. [Google Scholar] [CrossRef]
- Yang, X. The Study on Gemological and Mineracal Characteristics of Blue-green Jadeite and Its Crust from Guatemala. China Univ. Geosci. 2019. (In Chinese with English abstract). [Google Scholar]
- Wang, L.S.; Zhang, H.H.; Liu, J.Y.; Wang, L.S.; Ou, Y.; Liu, D.M.; Liu, W. Mineral Component and Genesis of High-Grade Green Jadeite Jade from Guatemala. J. Gems Gemmol. 2022, 24, 11–30. [Google Scholar]
- Lin, C.L.; He, X.M.; Lu, Z.Y.; Yao, Y.W. Phase composition and genesis of pyroxenic jadeite from Guatemala: Insights from cathodoluminescence. R. Soc. Chem. 2020, 10, 15937–15946. [Google Scholar] [CrossRef]
- Xing, B.Q.; Shi, G.H.; Zhang, J.H.; Long, C.; Zhang, Y.; He, L.Y.; Hu, R.J. Characteristics of the Guatemalan Feicui and Its Comparison to the Myanmar Feicui. Geoscience 2021, 6, 1769–1788. [Google Scholar]
Specimen | Colour | Infrared Spectral Peak (cm−1) | ||
---|---|---|---|---|
GN-1 | light green | 1169, 1079, 955 | 586, 532, 473 | |
GN-2 | dark green | 1170, 1079, 955 | 587, 532, 474 | |
GN-3 | black-green | 1065, 954, 880 | 653 | 557, 524, 464, 425 |
BU-1 | blue-green | 1068, 959, 877 | 648 | 563, 522, 468, 424 |
BU-2 | gray-green | 1169, 1080, 945 | 586, 521, 474 | |
BU-3 | black | 1169, 1078, 937 | 597, 517, 471 | |
Peak assignment | Si-Ob-Si asymmetric stretching vibration and Ot-Si-Ot symmetrical stretching vibration | Si-Ob-Si bending vibration | Si-O bending vibration and M-O stretching vibration |
Specimen | Raman Spectral Peak(cm−1) | ||
---|---|---|---|
GN-1 light green | 1044, 991, 884 | 780, 701, 582, 530, 432 | 379, 321 |
GN-2 dark green | 1044, 995, 892 | 784, 701, 578, 530, 436 | 379, 333 |
BU-2 gray-green | 1036, 995, 888 | 697, 578, 526, 432 | 374, 333 |
BU-2 white water line | 1036, 998, 892 | 697, 578, 526, 428 | 374, 337 |
BU-3 black | 1036, 895, 888 | 697, 578, 526, 432 | 374, 333 |
BU-3 gray edge | 1040, 995, 892 | 780, 701, 582, 526, 435 | 379, 333 |
Peak assignment | Si-O Symmetric stretching vibration | Si-Ob-Si Symmetric bending vibration | M-O Stretch/Bend |
Specimen Number | Raman Spectral Peak (cm−1) | ||
---|---|---|---|
BU-1 Blue green | 1025 | 685 | 350 |
BU-1 Dark green spot | 1025 | 689 | 358 |
Peak assignment | Si-O Symmetric stretching vibration | Si-Ob-Si Symmetric bending vibration | M-O Stretch/Bend |
Specimen Number | Raman Spectral Peak (cm−1) | |||
---|---|---|---|---|
GN-3 white spot | 1103, 1032, 819 | 772 | 685, 513, 485 | 337, 300 |
Peak assignment | Si-O Symmetric stretching vibration | AL-O Symmetric stretching vibration | Ot-Si-Ot bending vibration | M-O Stretching vibration |
Specimen Number | GN-1 | GN-2 | GN-3 | BU-1 | BU-2 | BU-3 |
---|---|---|---|---|---|---|
Fe | 53.25 | 54.58 | 57.98 | 35.18 | 60.34 | 29.96 |
Zr | 0.02 | 0.03 | 0.18 | 0.05 | 5.78 | 0.04 |
Mg | 2.05 | 2.43 | 5.80 | 4.65 | 3.17 | 2.98 |
Ca | 3.00 | 10.00 | 26.52 | 28.05 | 30.21 | 26.58 |
Sr | 0.05 | 0.08 | 0.06 | 28.74 | 30.85 | 30.25 |
Specimen Number | GN-1-1 | GN-1 | GN-3 | GN-3-2 | BU-1 | BU-3 | BU-3-2 |
---|---|---|---|---|---|---|---|
CaO | 1.830 | 0.102 | 12.026 | 11.513 | 11.073 | 0.911 | 0.944 |
TiO2 | 0.129 | 0.046 | 0.016 | 0.037 | 0.723 | 0.008 | 0.024 |
Al2O3 | 22.822 | 24.998 | 11.590 | 12.373 | 11.837 | 24.514 | 23.929 |
SiO2 | 59.077 | 59.443 | 57.875 | 58.561 | 58.549 | 58.868 | 60.807 |
NiO | 0.054 | 0.000 | 0.058 | 0.011 | 0.021 | 0.000 | 0.020 |
FeO | 1.078 | 0.166 | 2.853 | 2.820 | 2.032 | 0.507 | 0.499 |
MnO | 0.000 | 0.000 | 0.093 | 0.036 | 0.053 | 0.026 | 0.023 |
Cr2O3 | 0.000 | 0.000 | 0.012 | 0.026 | 0.004 | 0.000 | 0.000 |
Na2O | 13.615 | 14.912 | 7.439 | 7.584 | 7.912 | 13.844 | 13.889 |
MgO | 1.233 | 0.003 | 7.601 | 7.322 | 8.007 | 0.418 | 0.726 |
K2O | 0.010 | 0.002 | 0.008 | 0.004 | 0.008 | 0.046 | 0.014 |
Total | 99.850 | 99.671 | 99.570 | 100.287 | 100.219 | 99.143 | 100.875 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, T.; Zhang, C.; Lv, L.; Zhang, H.; Chen, Y.; Li, Z.; Liu, Y. Color-Causing Mechanisms of Guatemala Jadeite Jade: Constraints from Spectroscopy and Chemical Compositions. Crystals 2023, 13, 1535. https://doi.org/10.3390/cryst13111535
Li T, Zhang C, Lv L, Zhang H, Chen Y, Li Z, Liu Y. Color-Causing Mechanisms of Guatemala Jadeite Jade: Constraints from Spectroscopy and Chemical Compositions. Crystals. 2023; 13(11):1535. https://doi.org/10.3390/cryst13111535
Chicago/Turabian StyleLi, Ting, Cun Zhang, Linsu Lv, Haitao Zhang, Yuqing Chen, Zhibin Li, and Yue Liu. 2023. "Color-Causing Mechanisms of Guatemala Jadeite Jade: Constraints from Spectroscopy and Chemical Compositions" Crystals 13, no. 11: 1535. https://doi.org/10.3390/cryst13111535
APA StyleLi, T., Zhang, C., Lv, L., Zhang, H., Chen, Y., Li, Z., & Liu, Y. (2023). Color-Causing Mechanisms of Guatemala Jadeite Jade: Constraints from Spectroscopy and Chemical Compositions. Crystals, 13(11), 1535. https://doi.org/10.3390/cryst13111535