Development of a Real-Time Boron Concentration Monitoring Technique for Plasma Doping Implantation
Abstract
:1. Introduction
2. Experimental Section
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lee, S.; Kwong, D.L. Dual Poly-Si Gate Metal Oxide Semiconductor Field Effect Transistors Fabricated with High-Quality Chemical Vapor Deposition HfO2 Gate Dielectrics. Jpn. J. Appl. Phys. 2003, 42, 7256. [Google Scholar] [CrossRef]
- Liu, X.-Y.; Lin, X.; Cao, C.-W.; Sun, Q.-Q.; Lin, P.-C.; Bian, Y.-J.; Xing, C.; Wang, P.-F.; Zhang, D.W. Investigation of Single-Transistor Active Pixel Image Sensor Compatible with Dual-Poly-Gate Technology. In Proceedings of the 2012 Symposium on Photonics and Optoelectronics, Shanghai, China, 21–23 May 2012; pp. 1–4. [Google Scholar] [CrossRef]
- Son, N.J.; Oh, Y.; Kim, W.; Jang, S.M.; Yang, W.; Jin, G.; Kim, K. A unique dual-poly gate technology for 1.2-V mobile DRAM with simple in situ n/sup+/-doped polysilicon. IEEE Trans. Electron Devices 2004, 51, 1644–1652. [Google Scholar] [CrossRef]
- Hu, G.; Bruce, R. Design tradeoffs between surface and buried-channel FET’s. IEEE Trans. Electron Devices 1985, 32, 584–588. [Google Scholar] [CrossRef]
- Abe, Y.; Oishi, T.; Shiozawa, K.; Tokuda, Y.; Satoh, S. Simulation study on comparison between metal gate and polysilicon gate for sub-quarter-micron MOSFETs. IEEE Electron Device Lett. 1999, 20, 632–634. [Google Scholar] [CrossRef]
- Qin, S.; Hu, Y.J.; McTeer, A. PLAD (Plasma Doping) on 22 nm Technology Node and Beyond Evolutionary and/or Revolutionary. In Proceedings of the International Workshop on Junction Technology, Shanghai, China, 14–15 May 2012; pp. 1–11. [Google Scholar]
- Qin, S.; Brumfield, K.; Liu, L.J.; Hu, Y.J.; McTeer, A.; Hsu, W.H.; Wang, M. Plasma Chemistry Study of PLAD Processes. In Proceedings of the 19th International Conference on Ion Implantation Technology, Valladolid, Spain, 25–29 June 2012; pp. 380–385. [Google Scholar]
- Jeon, Y.; Koo, I.; Oh, J.; Lee, S.B.; Butterbaugh, J.; Jin, S.; Lee, J.; Rouh, K.; Ju, M.; Jeon, S.; et al. Key Technologies for Ultra High Dose CMOS Applications. In Proceedings of the 17th International Conference on Ion Implantation Technology, Monterey, CA, USA, 8–13 June 2008; pp. 133–136. [Google Scholar]
- Renau, A.; Scheuer, J.T. Comparison of Plasma Doping and Beamline Technologies for Low Energy Ion Implantation. In Proceedings of the 14th International Conference on Ion Implantation Technology, Taos, NM, USA, 22–27 September 2002; pp. 151–156. [Google Scholar]
- Raj, D.M.; Godet, L.; Chamberlain, N.; Hadidi, K.; Singh, V.; Papasouliotis, G.D. Optimization and Control of Plasma Doping Processes. AIP Conf. Proc. 2011, 1321, 142. [Google Scholar]
- Kouzminov, D.; Cournoyer, J.; Norasetthekul, S.; Muthuraman, H.; Gao, Q. Quantitative aspects of PLAD sidewall doping characterization by SIMS and APT. Microsc. Microanal. 2019, 25, 511–516. [Google Scholar] [CrossRef] [PubMed]
- Qin, S. Plasma Doping (PLAD) for Advanced Memory Device Manufacturing. In Proceedings of the 2014 20th International Conference on Ion Implantation Technology (IIT), Portland, OR, USA, 26 June–4 July 2014; pp. 1–6. [Google Scholar]
- Van Den Berg, J.; Rossall, A.; England, J. Arsenic Plasma Doping in Si Characterized by High Resolution Medium Energy Ion Scattering Depth Profile Analysis. In Proceedings of the 2018 22nd International Conference on Ion Implantation Technology (IIT), Würzburg, Germany, 16–21 September 2018; pp. 263–266. [Google Scholar]
- Van Den Berg, J.; Rossall, A.; England, J. Characterization of arsenic plasma doping and postimplant processing of silicon using medium energy ion scattering. J. Vac. Sci. Technol. B 2019, 37, 032901. [Google Scholar] [CrossRef]
- Jones, E.C.; Cheung, N.W. Characteristics of sub-100-nm p/sup+//n junctions fabricated by plasma immersion ion implantation. IEEE Electron Device Lett. 1993, 14, 444–446. [Google Scholar] [CrossRef]
- Ma, X.; Liu, W.; Chen, C.; Zhan, D.; Song, Z.; Feng, S. A high-quality SOI structure fabricated by low-temperature technology with B+/H+ co-implantation and plasma bonding. Semicond. Sci. Technol. 2006, 21, 959. [Google Scholar] [CrossRef]
- Bernstein, J.D.; Qin, S.; Chan, C.; King, T.J. Hydrogenation of polycrystalline silicon thin film transistors by plasma ion implantation. IEEE Electron Device Lett. 1995, 16, 421–423. [Google Scholar] [CrossRef]
- Moon, C.R.; Jung, J.; Kwon, D.W.; Yoo, J.; Lee, D.H.; Kim, K. Application of plasma-doping (PLAD) technique to reduce dark current of CMOS image sensors. IEEE Electron Device Lett. 2007, 28, 114–116. [Google Scholar] [CrossRef]
- Raj, D.; Grivna, G.; Loechelt, G.; Gao, Q. PLAD (Plasma Doping) for p-type Deep Trench Doping in Power Device Applications. In Proceedings of the 2018 22nd International Conference on Ion Implantation Technology (IIT), Würzburg, Germany, 16–21 September 2018; pp. 42–45. [Google Scholar]
- Qian, X.Y.; Cheung, N.W.; Lieberman, M.A.; Brennan, R.; Current, M.I.; Jha, N. Conformal implantation for trench doping with plasma immersion ion implantation. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 1991, 55, 898–901. [Google Scholar] [CrossRef]
- Jung, L.M.; Do, S.W.; Kim, J.M.; Kong, S.H.; Nam, K.H.; Lee, Y.H. Ultra-Shallow Junction Formation by Plasma doping and Excimer Laser Annealing. ECS Trans. 2009, 19, 87. [Google Scholar] [CrossRef]
- Anders, A. Metal plasma immersion ion implantation and deposition: A review. Surf. Coat. Technol. 1997, 93, 158–167. [Google Scholar] [CrossRef]
- Srivastava, A.; Downey, R.; Persing, H.; Yoshida, N.; Han, K.; Maynard, H. Exploration of PLAD Aluminum Implants for Work Function Adjustment. In Proceedings of the 2014 20th International Conference on Ion Implantation Technology (IIT), Portland, OR, USA, 26 June–4 July 2014; pp. 1–4. [Google Scholar]
- Xu, Q.; Zou, W.; Xu, G.; Tang, S.; Tao, G.; Salimian, S.; Ye, T. Band-edge work function obtained by plasma doping TiN metal gate for nMOS device application. IEEE Trans. Electron Devices 2018, 65, 2400–2405. [Google Scholar] [CrossRef]
- Oh, J.G.; Lee, J.K.; Hwang, S.H.; Cho, H.J.; Sohn, Y.S.; Sheen, D.S.; Pyi, S.H.; Lee, S.W.; Hahn, S.H.; Jeon, Y.B.; et al. Characterization of B2H6 Plasma Doping for Converted p+ Poly-Si Gate. In Proceedings of the 16th International Conference on Ion Implantation Technology, Marseille, France, 11–16 June 2006; pp. 25–28. [Google Scholar]
- Teo, H.W.; Wang, Y.; Ong, K.; Mo, Z.Q. SIMS Analysis of Ultra-Shallow Boron Implant. In Proceedings of the 2021 IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA), Singapore, 15 September–15 October 2021; pp. 1–4. [Google Scholar]
- Fearn, S.; McPhail, D.S. High resolution quantitative SIMS analysis of shallow boron implants in silicon using a bevel and image approach. Appl. Surf. Sci. 2005, 252, 893–904. [Google Scholar] [CrossRef]
- Qin, S. Front-side and back-side secondary ion mass spectrometry analyses on advanced doping processes for ultra-large scale integrated circuit: A case study. Thin Solid Films 2023, 766, 139654. [Google Scholar] [CrossRef]
- Zhang, X.; Connelly, D.; Takeuchi, H.; Hytha, M.; Mears, R.J.; Rubin, L.M.; Liu, T.J.K. Effects of oxygen-inserted layers and oxide capping layer on dopant activation for the formation of ultrashallow p-n junctions in silicon. J. Vac. Sci. Technol. B 2018, 36, 061211. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chai, S.-Y.; Choa, S.-H. Development of a Real-Time Boron Concentration Monitoring Technique for Plasma Doping Implantation. Crystals 2023, 13, 1665. https://doi.org/10.3390/cryst13121665
Chai S-Y, Choa S-H. Development of a Real-Time Boron Concentration Monitoring Technique for Plasma Doping Implantation. Crystals. 2023; 13(12):1665. https://doi.org/10.3390/cryst13121665
Chicago/Turabian StyleChai, Su-Young, and Sung-Hoon Choa. 2023. "Development of a Real-Time Boron Concentration Monitoring Technique for Plasma Doping Implantation" Crystals 13, no. 12: 1665. https://doi.org/10.3390/cryst13121665
APA StyleChai, S.-Y., & Choa, S.-H. (2023). Development of a Real-Time Boron Concentration Monitoring Technique for Plasma Doping Implantation. Crystals, 13(12), 1665. https://doi.org/10.3390/cryst13121665