Hydrothermal Synthesis of Well-Defined Red-Emitting Eu-Doped GdPO4 Nanophosphors and Investigation of Their Morphology and Optical Properties
Abstract
:1. Introduction
2. Materials and Methods
- nine samples were synthesized under a neutral reaction media (pH = 7) using different <Gd>:<P> molar ratios (1:7.5, 1:10, 1:12.5, 1:15, 1:17.5, 1:20, 1:25, 1:30, 1:50);
- nine samples were synthesized under a molar ratio of <Gd>:<P> = 1:10 and different pH of the reaction mixture (2, 3, 4, 5, 6, 8, 9, 10, 11).
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ryoo, R.; Kim, J.; Jo, C.; Han, S.W.; Kim, J.C.; Park, H.; Han, J.; Shin, H.S.; Shin, J.W. Rare-earth-platinum alloy nanoparticles in mesoporous zeolite for catalysis. Nature 2020, 585, 221–224. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.F.; Li, J.; Ye, T.N.; Kobayashi, Y.; Sasase, M.; Kitano, M.; Hosono, H. Synthesis of Rare-Earth-Based Metallic Electride Nanoparticles and Their Catalytic Applications to Selective Hydrogenation and Ammonia Synthesis. ACS Catal. 2018, 8, 11054–11058. [Google Scholar] [CrossRef]
- Runowski, M.; Wozny, P.; Martin, I.R. Optical pressure sensing in vacuum and high-pressure ranges using lanthanide-based luminescent thermometer-manometer. J. Mater. Chem. C 2021, 9, 4643–4651. [Google Scholar] [CrossRef]
- Sahu, N.K.; Singh, N.S.; Ningthoujam, R.S.; Bahadur, D. Ce3+-Sensitized GdPO4:Tb3+ Nanorods: An Investigation on Energy Transfer, Luminescence Switching, and Quantum Yield. ACS Photonics 2014, 1, 337–346. [Google Scholar] [CrossRef]
- Wei, Z.; Liu, Y.W.; Li, B.; Li, J.J.; Lu, S.; Xing, X.W.; Liu, K.; Wang, F.; Zhang, H.J. Rare-earth based materials: An effective toolbox for brain imaging, therapy, monitoring and neuromodulation. Light-Sci. Appl. 2022, 11, 19. [Google Scholar] [CrossRef]
- Wu, Y.L.; Xu, X.Z.; Li, Q.L.; Yang, R.C.; Ding, H.X.; Xiao, Q. Synthesis of bifunctional Gd2O3:Eu3+ nanocrystals and their applications in biomedical imaging. J. Rare Earth 2015, 33, 529–534. [Google Scholar] [CrossRef]
- Tang, Y.X.; Mei, R.; Yang, S.K.; Tang, H.X.; Yin, W.Z.; Xu, Y.C.; Gao, Y.P. Hollow GdPO4:Eu3+ microspheres: Luminescent properties and applications as drug carrier. Superlattices Microstruct. 2016, 92, 256–263. [Google Scholar] [CrossRef]
- Lin, F.; Sun, Z.; Jia, M.C.; Zhang, A.Q.; Fu, Z.L.; Sheng, T.Q. Core-shell mutual enhanced luminescence based on space isolation strategy for anti-counterfeiting applications. J. Lumin. 2020, 218, 6. [Google Scholar] [CrossRef]
- Pushpendra; Suryawanshi, I.; Srinidhi, S.; Singh, S.; Kalia, R.; Kunchala, R.K.; Mudavath, S.L.; Naidu, B.S. Downshifting and upconversion dual mode emission from lanthanide doped GdPO4 nanorods for unclonable anti-counterfeiting. Mater. Today Commun. 2021, 26, 10. [Google Scholar] [CrossRef]
- Wang, G.F.; Peng, Q.; Li, Y.D. Lanthanide-Doped Nanocrystals: Synthesis, Optical-Magnetic Properties, and Applications. Acc. Chem. Res. 2011, 44, 322–332. [Google Scholar] [CrossRef]
- Choi, S.J.; Lee, J.K.; Jeong, J.; Choy, J.H. Toxicity evaluation of inorganic nanoparticles: Considerations and challenges. Mol. Cell. Toxicol. 2013, 9, 205–210. [Google Scholar] [CrossRef]
- Klimkevicius, V.; Janulevicius, M.; Babiceva, A.; Drabavicius, A.; Katelnikovas, A. Effect of Cationic Brush-Type Copolymers on the Colloidal Stability of GdPO4 Particles with Different Morphologies in Biological Aqueous Media. Langmuir 2020, 36, 7533–7544. [Google Scholar] [CrossRef] [PubMed]
- Janulevicius, M.; Klimkevicius, V.; Vanetsev, A.; Plausinaitiene, V.; Sakirzanovas, S.; Katelnikovas, A. Controlled hydrothermal synthesis, morphological design and colloidal stability of GdPO4·nH2O particles. Mater. Today Commun. 2020, 23, 8. [Google Scholar] [CrossRef]
- Cui, X.X.; Fan, Q.; Shi, S.J.; Wen, W.H.; Chen, D.F.; Guo, H.T.; Xu, Y.T.; Gao, F.; Nie, R.Z.; Ford, H.D.; et al. A novel near-infrared nanomaterial with high quantum efficiency and its applications in real time in vivo imaging. Nanotechnology 2018, 29, 11. [Google Scholar] [CrossRef]
- Ezerskyte, E.; Grigorjevaite, J.; Minderyte, A.; Saitzek, S.; Katelnikovas, A. Temperature-Dependent Luminescence of Red-Emitting Ba2Y5B5O17: Eu3+ Phosphors with Efficiencies Close to Unity for Near-UV LEDs. Materials 2020, 13, 13. [Google Scholar] [CrossRef] [Green Version]
- Priya, R.; Mariappan, R.; Karthikeyan, A.; Palani, E.; Krishnamoorthy, E.; Gowrisankar, G. Review on rare earth metals doped LaPO4 for optoelectronic applications. Solid State Commun. 2021, 339, 26. [Google Scholar] [CrossRef]
- Zheng, B.Z.; Fan, J.Y.; Chen, B.; Qin, X.; Wang, J.; Wang, F.; Deng, R.R.; Liu, X.G. Rare-Earth Doping in Nanostructured Inorganic Materials. Chem. Rev. 2022, 122, 5519–5603. [Google Scholar] [CrossRef]
- Zhou, J.; Liu, Q.; Feng, W.; Sun, Y.; Li, F.Y. Upconversion Luminescent Materials: Advances and Applications. Chem. Rev. 2015, 115, 395–465. [Google Scholar] [CrossRef]
- Klimkevicius, V.; Voronovic, E.; Jarockyte, G.; Skripka, A.; Vetrone, F.; Rotomskis, R.; Katelnikovas, A.; Karabanovas, V. Polymer brush coated upconverting nanoparticles with improved colloidal stability and cellular labeling. J. Mat. Chem. B 2022, 10, 625–636. [Google Scholar] [CrossRef]
- Bagheri, A.; Arandiyan, H.; Boyer, C.; Lim, M. Lanthanide-Doped Upconversion Nanoparticles: Emerging Intelligent Light-Activated Drug Delivery Systems. Adv. Sci. 2016, 3, 25. [Google Scholar] [CrossRef]
- Cichos, J.; Karbowiak, M. Spectroscopic characterization of ligands on the surface of water dispersible NaGdF4:Ln3+ nanocrystals. Appl. Surf. Sci. 2012, 258, 5610–5618. [Google Scholar] [CrossRef]
- Alonso-de Castro, S.; Ruggiero, E.; Fernandez, A.L.; Cossio, U.; Baz, Z.; Otaegui, D.; Gomez-Vallejo, V.; Padro, D.; Llop, J.; Salassa, L. Functionalizing NaGdF4:Yb,Er Upconverting Nanoparticles with Bone-Targeting Phosphonate Ligands: Imaging and In Vivo Biodistribution. Inorganics 2019, 7, 12. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.Y.; Gao, Z.Y.; Zeng, J.F.; Hou, Y.; Fang, F.; Li, Y.L.; Qiao, R.R.; Shen, L.; Lei, H.; Yang, W.S.; et al. Magnetic/Upconversion Fluorescent NaGdF4:Yb,Er Nanoparticle-Based Dual-Modal Molecular Probes for Imaging Tiny Tumors in Vivo. ACS Nano 2013, 7, 7227–7240. [Google Scholar] [CrossRef]
- Dong, C.H.; Korinek, A.; Blasiak, B.; Tomanek, B.; van Veggel, F. Cation Exchange: A Facile Method To Make NaYF4:Yb,Tm-NaGdF4 Core-Shell Nanoparticles with a Thin, Tunable, and Uniform Shell. Chem. Mat. 2012, 24, 1297–1305. [Google Scholar] [CrossRef]
- Song, H.J.; Zhou, L.Q.; Li, L.; Hong, F.; Luo, X.R. Hydrothermal synthesis, characterization and luminescent properties of GdPO4·H2O:Tb3+ nanorods and nanobundles. Mater. Res. Bull. 2013, 48, 5013–5018. [Google Scholar] [CrossRef]
- Janulevicius, M.; Klimkevicius, V.; Mikoliunaite, L.; Vengalis, B.; Vargalis, R.; Sakirzanovas, S.; Plausinaitiene, V.; Zilinskas, A.; Katelnikovas, A. Ultralight Magnetic Nanofibrous GdPO4 Aerogel. ACS Omega 2020, 5, 14180–14185. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.Y.; Sun, P.; Liang, Y.M.; Wang, R.R.; Zhang, X. Sol-precipitation-hydrothermal synthesis and luminescence of GdPO4:Tb3+ submicron cubes. Chem. Phys. Lett. 2016, 651, 80–83. [Google Scholar] [CrossRef]
- Yang, R.; Qin, J.; Li, M.; Liu, Y.H.; Li, F. Redox hydrothermal synthesis of cerium phosphate microspheres with different architectures. Crystengcomm 2011, 13, 7284–7292. [Google Scholar] [CrossRef]
- Feng, S.H.; Xu, R.R. New materials in hydrothermal synthesis. Acc. Chem. Res. 2001, 34, 239–247. [Google Scholar] [CrossRef]
- Buissette, V.; Moreau, M.; Gacoin, T.; Boilot, J.P.; Chane-Ching, J.Y.; Le Mercier, T. Colloidal synthesis of luminescent rhabdophane LaPO4:Ln3+·xH2O (Ln = Ce, Tb, Eu; x ≈ 0.7) nanocrystals. Chem. Mater. 2004, 16, 3767–3773. [Google Scholar] [CrossRef]
- Huong, N.T.; Van, N.D.; Tien, D.M.; Tung, D.K.; Binh, N.T.; Anh, T.K.; Minh, L.Q. Structural and luminescent properties of (Eu,Tb)PO4·H2O nanorods/nanowires prepared by microwave technique. J. Rare Earths 2011, 29, 1170–1173. [Google Scholar] [CrossRef]
- Li, J.G.; Sakka, Y. Recent progress in advanced optical materials based on gadolinium aluminate garnet (Gd3Al5O12). Sci. Technol. Adv. Mater. 2015, 16, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matos, M.G.; Calefi, P.S.; Ciuffi, K.J.; Nassar, E.J. Synthesis and luminescent properties of gadolinium aluminates phosphors. Inorg. Chim. Acta 2011, 375, 63–69. [Google Scholar] [CrossRef]
- Maldiney, T.; Doan, B.T.; Alloyeau, D.; Bessodes, M.; Scherman, D.; Richard, C. Gadolinium-Doped Persistent Nanophosphors as Versatile Tool for Multimodal In Vivo Imaging. Adv. Funct. Mater. 2015, 25, 331–338. [Google Scholar] [CrossRef]
- Mahakhode, J.G.; Nande, A.; Dhoble, S.J. A review: X-ray excited luminescence of gadolinium based optoelectronic phosphors. Luminescence 2021, 36, 1344–1353. [Google Scholar] [CrossRef]
- Binnemans, K. Interpretation of europium(III) spectra. Coordin. Chem. Rev. 2015, 295, 1–45. [Google Scholar] [CrossRef] [Green Version]
- Sun, C.; Pratx, G.; Carpenter, C.M.; Liu, H.G.; Cheng, Z.; Gambhir, S.S.; Xing, L. Synthesis and Radioluminescence of PEGylated Eu3+-doped Nanophosphors as Bioimaging Probes. Adv. Mater. 2011, 23, H195–H199. [Google Scholar] [CrossRef] [Green Version]
- Grigorjevaite, J.; Ezerskyte, E.; Minderyte, A.; Stanionyte, S.; Juskenas, R.; Sakirzanovas, S.; Katelnikovas, A. Optical Properties of Red-Emitting Rb2Bi(PO4)(MoO4):Eu3+ Powders and Ceramics with High Quantum Efficiency for White LEDs. Materials 2019, 12, 14. [Google Scholar] [CrossRef] [Green Version]
- Díaz García, M.E.; Badía-Laíño, R. Fluorescence | Time-Resolved Fluorescence☆. In Encyclopedia of Analytical Science, 3rd ed.; Worsfold, P., Poole, C., Townshend, A., Miró, M., Eds.; Academic Press: Oxford, UK, 2019; pp. 327–340. [Google Scholar]
- Skripka, A.; Cheng, T.; Jones, C.M.S.; Marin, R.; Marques-Hueso, J.; Vetrone, F. Spectral characterization of LiYbF4 upconverting nanoparticles. Nanoscale 2020, 12, 17545–17554. [Google Scholar] [CrossRef]
- Kim, D.K.; Dobson, J. Nanomedicine for targeted drug delivery. J. Mater. Chem. 2009, 19, 6294–6307. [Google Scholar] [CrossRef]
- Zhang, Y.W.; Yan, Z.G.; You, L.P.; Si, R.; Yan, C.H. General synthesis and characterization of monocrystalline lanthanide orthophosphate nanowires. Eur. J. Inorg. Chem. 2003, 2003, 4099–4104. [Google Scholar] [CrossRef]
- Hernandez, A.G.; Boyer, D.; Potdevin, A.; Chadeyron, G.; Murillo, A.G.; Romo, F.D.C.; Mahiou, R. Hydrothermal synthesis of lanthanide-doped GdPO4 nanowires and nanoparticles for optical applications. Phys. Status Solidi A Appl. Mat. 2014, 211, 498–503. [Google Scholar] [CrossRef]
- Yan, B.; Gu, J.F.; Xiao, X.Z. LnPO4:RE3+ (La = La, Gd; RE = Eu, Tb) nanocrystals: Solvo-thermal synthesis, microstructure and photoluminescence. J. Nanopart. Res. 2010, 12, 2145–2152. [Google Scholar] [CrossRef]
- Ren, W.L.; Tian, G.; Zhou, L.J.; Yin, W.Y.; Yan, L.; Jin, S.; Zu, Y.; Li, S.J.; Gu, Z.J.; Zhao, Y.L. Lanthanide ion-doped GdPO4 nanorods with dual-modal bio-optical and magnetic resonance imaging properties. Nanoscale 2012, 4, 3754–3760. [Google Scholar] [CrossRef]
- Budrevicius, D.; Skaudzius, R. Volume dependence of the size of GdPO4:15%Eu particles synthesized by the hydrothermal method. J. Alloys Compd. 2022, 911, 5. [Google Scholar] [CrossRef]
- Yaiphaba, N.; Ningthoujam, R.S.; Singh, N.R.; Vatsa, R.K. Luminescence Properties of Redispersible Tb3+-Doped GdPO4 Nanoparticles Prepared by an Ethylene Glycol Route. Eur. J. Inorg. Chem. 2010, 2010, 2682–2687. [Google Scholar] [CrossRef]
- Huo, Z.Y.; Chen, C.; Chu, D.; Li, H.H.; Li, Y.D. Systematic synthesis of lanthanide phosphate nanocrystals. Chem. Eur. J. 2007, 13, 7708–7714. [Google Scholar] [CrossRef]
- Rodriguez-Liviano, S.; Becerro, A.I.; Alcantara, D.; Grazu, V.; de la Fuente, J.M.; Ocana, M. Synthesis and Properties of Multifunctional Tetragonal Eu:GdPO4 Nanocubes for Optical and Magnetic Resonance Imaging Applications. Inorg. Chem. 2013, 52, 647–654. [Google Scholar] [CrossRef] [Green Version]
- Di, W.H.; Wang, X.J.; Zhao, H.F. Synthesis and characterization of LnPO4·nH2O (Ln = La, Ce, Gd, Tb, Dy) nanorods and nanowires. J. Nanosci. Nanotechnol. 2007, 7, 3624–3628. [Google Scholar] [CrossRef]
- Huang, C.C.; Lo, Y.W.; Kuo, W.S.; Hwu, J.R.; Su, W.C.; Shieh, D.B.; Yeh, C.S. Facile preparation of self-assembled hydrogel-like GdPO4·H2O nanorods. Langmuir 2008, 24, 8309–8313. [Google Scholar] [CrossRef]
- Xu, Z.H.; Cao, Y.; Li, C.X.; Ma, P.A.; Zhai, X.F.; Huang, S.S.; Kang, X.J.; Shang, M.M.; Yang, D.M.; Dai, Y.L.; et al. Urchin-like GdPO4 and GdPO4:Eu3+ hollow spheres—hydrothermal synthesis, luminescence and drug-delivery properties. J. Mater. Chem. 2011, 21, 3686–3694. [Google Scholar] [CrossRef]
- Camacho, A.R.; Romo, F.D.C.; Murillo, A.G.; Oliva, J.; Garcia, C.R. Sol-gel synthesis and up-conversion luminescence of GdPO4·Gd3PO7:Yb3+, Ln3+ (Ln = Er, Ho, Tm) phosphor. Mater. Lett. 2018, 226, 34–37. [Google Scholar] [CrossRef]
- Kumar, V.; Rani, P.; Singh, D.; Chawla, S. Efficient multiphoton upconversion and synthesis route dependent emission tunability in GdPO4:Ho3+,Yb3+ nanocrystals. RSC Adv. 2014, 4, 36101–36105. [Google Scholar] [CrossRef] [Green Version]
- Baur, F.; Glocker, F.; Jüstel, T. Photoluminescence and energy transfer rates and efficiencies in Eu3+ activated Tb2Mo3O12. J. Mater. Chem. C 2015, 3, 2054–2064. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.J.; Gao, M.Y. A facile route for preparing rhabdophane rare earth phosphate nanorods. J. Mater. Chem. 2006, 16, 1360–1365. [Google Scholar] [CrossRef]
- Wang, Z.H.; Shi, X.F.; Wang, X.J.; Zhu, Q.; Kim, B.N.; Sun, X.D.; Li, J.G. Breaking the strong 1D growth habit to yield quasi-equiaxed REPO4 nanocrystals (RE = La-Dy) via solvothermal reaction and investigation of photoluminescence. Crystengcomm 2018, 20, 796–806. [Google Scholar] [CrossRef] [Green Version]
- Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 1976, 32, 751–767. [Google Scholar] [CrossRef]
- Ropp, R.C. Luminescence and the Solid State; Elsevier Science: Amsterdam, The Netherlands, 2004. [Google Scholar]
- Jubera, V.; Chaminade, J.P.; Garcia, A.; Guillen, F.; Fouassier, C. Luminescent properties of Eu3+-activated lithium rare earth borates and oxyborates. J. Lumin. 2003, 101, 1–10. [Google Scholar] [CrossRef]
- Lahoz, F.; Martin, I.R.; Mendez-Ramos, J.; Nunez, P. Dopant distribution in a Tm3+-Yb3+ codoped silica based glass ceramic: An infrared-laser induced upconversion study. J. Chem. Phys. 2004, 120, 6180–6190. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ezerskyte, E.; Zarkov, A.; Klimkevicius, V.; Katelnikovas, A. Hydrothermal Synthesis of Well-Defined Red-Emitting Eu-Doped GdPO4 Nanophosphors and Investigation of Their Morphology and Optical Properties. Crystals 2023, 13, 174. https://doi.org/10.3390/cryst13020174
Ezerskyte E, Zarkov A, Klimkevicius V, Katelnikovas A. Hydrothermal Synthesis of Well-Defined Red-Emitting Eu-Doped GdPO4 Nanophosphors and Investigation of Their Morphology and Optical Properties. Crystals. 2023; 13(2):174. https://doi.org/10.3390/cryst13020174
Chicago/Turabian StyleEzerskyte, Egle, Aleksej Zarkov, Vaidas Klimkevicius, and Arturas Katelnikovas. 2023. "Hydrothermal Synthesis of Well-Defined Red-Emitting Eu-Doped GdPO4 Nanophosphors and Investigation of Their Morphology and Optical Properties" Crystals 13, no. 2: 174. https://doi.org/10.3390/cryst13020174
APA StyleEzerskyte, E., Zarkov, A., Klimkevicius, V., & Katelnikovas, A. (2023). Hydrothermal Synthesis of Well-Defined Red-Emitting Eu-Doped GdPO4 Nanophosphors and Investigation of Their Morphology and Optical Properties. Crystals, 13(2), 174. https://doi.org/10.3390/cryst13020174