Solvothermal Synthesis of Calcium Hydroxyapatite via Hydrolysis of Alpha-Tricalcium Phosphate in the Presence of Different Organic Additives
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis
2.2. Characterization
3. Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Habraken, W.; Habibovic, P.; Epple, M.; Bohner, M. Calcium phosphates in biomedical applications: Materials for the future? Mater. Today 2016, 19, 69–87. [Google Scholar] [CrossRef]
- Zikrata, O.V.; Larina, O.V.; Valihura, K.V.; Kyriienko, P.I.; Balakin, D.Y.; Khalakhan, I.; Veltruská, K.; Krajnc, A.; Mali, G.; Soloviev, S.O.; et al. Successive Vapor-Phase Guerbet Condensation of Ethanol and 1-Butanol to 2-Ethyl-1-hexanol over Hydroxyapatite Catalysts in a Flow Reactor. ACS Sustain. Chem. Eng. 2021, 9, 17289–17300. [Google Scholar] [CrossRef]
- Goto, T.; Cho, S.H.; Ohtsuki, C.; Sekino, T. Selective adsorption of dyes on TiO2-modified hydroxyapatite photocatalysts morphologically controlled by solvothermal synthesis. J. Environ. Chem. Eng. 2021, 9, 105738. [Google Scholar] [CrossRef]
- Ivanets, A.; Zarkov, A.; Prozorovich, V.; Venhlinskaya, E.; Radkevich, A.; Yang, J.-C.; Papynov, E.; Yarusova, S.; Kareiva, A. Effect of Mg2+-, Sr2+-, and Fe3+-substitution on 85Sr and 60Co adsorption on amorphous calcium phosphates: Adsorption performance, selectivity, and mechanism. J. Environ. Chem. Eng. 2022, 10, 107425. [Google Scholar] [CrossRef]
- Sinusaite, L.; Antuzevics, A.; Popov, A.I.; Rogulis, U.; Misevicius, M.; Katelnikovas, A.; Kareiva, A.; Zarkov, A. Synthesis and luminescent properties of Mn-doped alpha-tricalcium phosphate. Ceram. Int. 2021, 47, 5335–5340. [Google Scholar] [CrossRef]
- Zhuang, Z.; Fujimi, T.J.; Nakamura, M.; Konishi, T.; Yoshimura, H.; Aizawa, M. Development of a,b-plane-oriented hydroxyapatite ceramics as models for living bones and their cell adhesion behavior. Acta Biomater. 2013, 9, 6732–6740. [Google Scholar] [CrossRef]
- Kawasaki, T.; Takahashi, S.; Ideda, K. Hydroxyapatite high-performance liquid chromatography: Column performance for proteins. Eur. J. Biochem. 1985, 152, 361–371. [Google Scholar] [CrossRef]
- Kawasaki, T.; Ikeda, K.; Takahashi, S.; Kuboki, Y. Further study of hydroxyapatite high-performance liquid chromatography using both proteins and nucleic acids, and a new technique to increase chromatographic efficiency. Eur. J. Biochem. 1986, 155, 249–257. [Google Scholar] [CrossRef]
- Ezerskyte-Miseviciene, A.; Kareiva, A. Everything old is new again: A reinspection of solid-state method for the fabrication of high quality calcium hydroxyapatite bioceramics. Mendeleev. Commun. 2019, 29, 273–275. [Google Scholar] [CrossRef]
- Bogdanoviciene, I.; Beganskiene, A.; Tõnsuaadu, K.; Glaser, J.; Meyer, H.J.; Kareiva, A. Calcium hydroxyapatite, Ca10(PO4)6(OH)2 ceramics prepared by aqueous sol–gel processing. Mater. Res. Bull. 2006, 41, 1754–1762. [Google Scholar] [CrossRef]
- Ferraris, S.; Yamaguchi, S.; Barbani, N.; Cazzola, M.; Cristallini, C.; Miola, M.; Vernè, E.; Spriano, S. Bioactive materials: In vitro investigation of different mechanisms of hydroxyapatite precipitation. Acta Biomater. 2020, 102, 468–480. [Google Scholar] [CrossRef] [PubMed]
- Jung, K.-W.; Lee, S.Y.; Choi, J.-W.; Lee, Y.J. A facile one-pot hydrothermal synthesis of hydroxyapatite/biochar nanocomposites: Adsorption behavior and mechanisms for the removal of copper(II) from aqueous media. Chem. Eng. J. 2019, 369, 529–541. [Google Scholar] [CrossRef]
- Goto, T.; Kim, I.Y.; Kikuta, K.; Ohtsuki, C. Hydroxyapatite formation by solvothermal treatment of α-tricalcium phosphate with water–ethanol solution. Ceram. Int. 2012, 38, 1003–1010. [Google Scholar] [CrossRef]
- Sinusaite, L.; Popov, A.; Raudonyte-Svirbutaviciene, E.; Yang, J.-C.; Kareiva, A.; Zarkov, A. Effect of Mn doping on hydrolysis of low-temperature synthesized metastable alpha-tricalcium phosphate. Ceram. Int. 2021, 47, 12078–12083. [Google Scholar] [CrossRef]
- Suchanek, K.; Bartkowiak, A.; Perzanowski, M.; Marszałek, M. From monetite plate to hydroxyapatite nanofibers by monoethanolamine assisted hydrothermal approach. Sci. Rep. 2018, 8, 15408. [Google Scholar] [CrossRef]
- In, Y.; Amornkitbamrung, U.; Hong, M.-H.; Shin, H. On the Crystallization of Hydroxyapatite under Hydrothermal Conditions: Role of Sebacic Acid as an Additive. ACS Omega 2020, 5, 27204–27210. [Google Scholar] [CrossRef]
- Jiang, S.; Cao, Y.; Li, S.; Pang, Y.; Sun, Z. Dual function of poly(acrylic acid) on controlling amorphous mediated hydroxyapatite crystallization. J. Cryst. Growth 2021, 557, 125991. [Google Scholar] [CrossRef]
- Karalkeviciene, R.; Raudonyte-Svirbutaviciene, E.; Gaidukevic, J.; Zarkov, A.; Kareiva, A. Solvothermal Synthesis of Calcium-Deficient Hydroxyapatite via Hydrolysis of α-Tricalcium Phosphate in Different Aqueous-Organic Media. Crystals 2022, 12, 253. [Google Scholar] [CrossRef]
- Sinusaite, L.; Kareiva, A.; Zarkov, A. Thermally Induced Crystallization and Phase Evolution of Amorphous Calcium Phosphate Substituted with Divalent Cations Having Different Sizes. Cryst. Growth Des. 2021, 21, 1242–1248. [Google Scholar] [CrossRef]
- Sinusaite, L.; Grigoraviciute-Puroniene, I.; Popov, A.; Ishikawa, K.; Kareiva, A.; Zarkov, A. Controllable synthesis of tricalcium phosphate (TCP) polymorphs by wet precipitation: Effect of washing procedure. Ceram. Int. 2019, 45, 12423–12428. [Google Scholar] [CrossRef]
- Torres, P.M.C.; Vieira, S.I.; Cerqueira, A.R.; Pina, S.; da Cruz Silva, O.A.B.; Abrantes, J.C.C.; Ferreira, J.M.F. Effects of Mn-doping on the structure and biological properties of β-tricalcium phosphate. J. Inorg. Biochem. 2014, 136, 57–66. [Google Scholar] [CrossRef] [PubMed]
- Koutsopoulos, S. Synthesis and characterization of hydroxyapatite crystals: A review study on the analytical methods. J. Biomed. Mater. Res. 2002, 62, 600–612. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Lee, J. Nanoscale hydroxyapatite particles for bone tissue engineering. Acta Biomater. 2011, 7, 2769–2781. [Google Scholar] [CrossRef] [PubMed]
- Dey, S.; Das, M.; Balla, V.K. Effect of hydroxyapatite particle size, morphology and crystallinity on proliferation of colon cancer HCT116 cells. Mater. Sci. Eng. C 2014, 39, 336–339. [Google Scholar] [CrossRef]
- Li, N.; Wu, G.; Yao, H.; Tang, R.; Gu, X.; Tu, C. Size effect of nano-hydroxyapatite on proliferation of odontoblast-like MDPC-23 cells. Dent. Mater. J. 2019, 38, 534–539. [Google Scholar] [CrossRef]
- Wen, Y.; Li, J.; Lin, H.; Huang, H.; Song, K.; Duan, K.; Guo, T.; Weng, J. Improvement of Drug-Loading Properties of Hydroxyapatite Particles Using Triethylamine as a Capping Agent: A Novel Approach. Crystals 2021, 11, 703. [Google Scholar] [CrossRef]
Notation | Organic Additive | Concentration of Additive | Water to Ethylene Glycol Ratio (v/v) |
---|---|---|---|
SLS:005 | Sodium lauryl sulfate | 0.005 mol/L | 100:0 |
SLS:025 | Sodium lauryl sulfate | 0.025 mol/L | 100:0 |
SLS:05 | Sodium lauryl sulfate | 0.05 mol/L | 100:0 |
SLS:075 | Sodium lauryl sulfate | 0.075 mol/L | 100:0 |
SLS:1 | Sodium lauryl sulfate | 0.1 mol/L | 100:0 |
DDDA:005 | Dodecanedioic acid | 0.005 mol/L | 100:0 |
DDDA:025 | Dodecanedioic acid | 0.025 mol/L | 100:0 |
DDDA:05 | Dodecanedioic acid | 0.05 mol/L | 100:0 |
DDDA:075 | Dodecanedioic acid | 0.075 mol/L | 100:0 |
DDDA:1 | Dodecanedioic acid | 0.1 mol/L | 100:0 |
Asp:005 | DL-Aspartic acid | 0.005 mol/L | 100:0 |
Asp:025 | DL-Aspartic acid | 0.025 mol/L | 100:0 |
Asp:05 | DL-Aspartic acid | 0.05 mol/L | 100:0 |
Asp:075 | DL-Aspartic acid | 0.075 mol/L | 100:0 |
Asp:1 | DL-Aspartic acid | 0.1 mol/L | 100:0 |
Sa:005 | Suberic acid | 0.005 mol/L | 100:0 |
Sa:025 | Suberic acid | 0.025 mol/L | 100:0 |
Sa:05 | Suberic acid | 0.05 mol/L | 100:0 |
Sa:075 | Suberic acid | 0.075 mol/L | 100:0 |
Sa:1 | Suberic acid | 0.1 mol/L | 100:0 |
Asp:005:EG | DL-Aspartic acid | 0.005 mol/L | 40:60 |
Asp:025:EG | DL-Aspartic acid | 0.025 mol/L | 40:60 |
Asp:05:EG | DL-Aspartic acid | 0.05 mol/L | 40:60 |
Asp:075:EG | DL-Aspartic acid | 0.075 mol/L | 40:60 |
Asp:1:EG | DL-Aspartic acid | 0.1 mol/L | 40:60 |
Sa:005:EG | Suberic acid | 0.005 mol/L | 40:60 |
Sa:025:EG | Suberic acid | 0.025 mol/L | 40:60 |
Sa:05:EG | Suberic acid | 0.05 mol/L | 40:60 |
Sa:075:EG | Suberic acid | 0.075 mol/L | 40:60 |
Sa:1:EG | Suberic acid | 0.1 mol/L | 40:60 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karalkeviciene, R.; Raudonyte-Svirbutaviciene, E.; Zarkov, A.; Yang, J.-C.; Popov, A.I.; Kareiva, A. Solvothermal Synthesis of Calcium Hydroxyapatite via Hydrolysis of Alpha-Tricalcium Phosphate in the Presence of Different Organic Additives. Crystals 2023, 13, 265. https://doi.org/10.3390/cryst13020265
Karalkeviciene R, Raudonyte-Svirbutaviciene E, Zarkov A, Yang J-C, Popov AI, Kareiva A. Solvothermal Synthesis of Calcium Hydroxyapatite via Hydrolysis of Alpha-Tricalcium Phosphate in the Presence of Different Organic Additives. Crystals. 2023; 13(2):265. https://doi.org/10.3390/cryst13020265
Chicago/Turabian StyleKaralkeviciene, Rasa, Eva Raudonyte-Svirbutaviciene, Aleksej Zarkov, Jen-Chang Yang, Anatoli I. Popov, and Aivaras Kareiva. 2023. "Solvothermal Synthesis of Calcium Hydroxyapatite via Hydrolysis of Alpha-Tricalcium Phosphate in the Presence of Different Organic Additives" Crystals 13, no. 2: 265. https://doi.org/10.3390/cryst13020265
APA StyleKaralkeviciene, R., Raudonyte-Svirbutaviciene, E., Zarkov, A., Yang, J.-C., Popov, A. I., & Kareiva, A. (2023). Solvothermal Synthesis of Calcium Hydroxyapatite via Hydrolysis of Alpha-Tricalcium Phosphate in the Presence of Different Organic Additives. Crystals, 13(2), 265. https://doi.org/10.3390/cryst13020265