Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (372)

Search Parameters:
Keywords = solvothermal synthesis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 3383 KiB  
Article
Increasing the Probability of Obtaining Intergrown Mixtures of Nanostructured Manganese Oxide Phases Under Solvothermal Conditions by Mixing Additives with Weak and Strong Chelating Natures
by María Lizbeth Barrios-Reyna, Enrique Sánchez-Mora and Enrique Quiroga-González
Physchem 2025, 5(3), 35; https://doi.org/10.3390/physchem5030035 - 16 Aug 2025
Viewed by 317
Abstract
Intergrown mixtures of nanostructured manganese oxide phases have been obtained using a highly complexing agent (ethylenediamine) and a weak complexer (urea) during their solvothermal synthesis. In this work, through a detailed structural analysis, it is evidenced the formation of an intergrown mixture of [...] Read more.
Intergrown mixtures of nanostructured manganese oxide phases have been obtained using a highly complexing agent (ethylenediamine) and a weak complexer (urea) during their solvothermal synthesis. In this work, through a detailed structural analysis, it is evidenced the formation of an intergrown mixture of three distinct manganese oxide phases (β-MnO2, α-Mn2O3, and Mn3O4). Scanning electron microscopy shows that the products have just one morphology, indicating that the different manganese oxide phases may have grown together, organizing themselves in a 3D crystal network. The reaction mechanisms are discussed in this paper. It is of great interest to produce intergrown mixtures of manganese oxide phases to take advantage of the availability of the different oxidation states of Mn in neighboring crystallites for applications like catalysis. Full article
(This article belongs to the Section Solid-State Chemistry and Physics)
Show Figures

Graphical abstract

18 pages, 4361 KiB  
Article
Synthesis of Tetragonal BaTiO3 Nanoparticles in Methanol
by Nasser Mohamed-Noriega, Julia Grothe and Stefan Kaskel
Nanomaterials 2025, 15(16), 1226; https://doi.org/10.3390/nano15161226 - 12 Aug 2025
Viewed by 374
Abstract
BaTiO3 (BT) is an essential material for many applications due to its dielectric, ferroelectric, and piezoelectric properties; nevertheless, it has been reported to possess a “critical size” in the nanoscale below which its outstanding properties are lost and the paraelectric cubic phase [...] Read more.
BaTiO3 (BT) is an essential material for many applications due to its dielectric, ferroelectric, and piezoelectric properties; nevertheless, it has been reported to possess a “critical size” in the nanoscale below which its outstanding properties are lost and the paraelectric cubic phase is stabilized at room temperature instead of the tetragonal phase. This value depends on multiple factors, mostly resulting from the synthesis route and conditions. Especially, internal stresses are known to promote the loss of tetragonality. Stresses are commonly present in water-containing synthesis routes because of the incorporation of hydroxyl groups into the oxygen sublattice of BaTiO3. On the other hand, the use of an organic solvent instead of water as a reaction medium overcomes the mentioned problem. This work presents a one-pot water-free solvothermal treatment of a Ti(O-iPr)4-Ba(OH)2·8H2O sol in methanol in the presence of small amounts of oleic acid, which allows the synthesis of spherical crystalline BT nanoparticles (from ~12 nm to ~30 nm in diameter) at temperatures as low as 100 °C with a cubic/tetragonal crystal structure confirmed by powder XRD, but predominantly tetragonal according to the Raman spectra. The retention of the tetragonal crystal structure is attributed to the lack of lattice hydroxyls (confirmed by FTIR spectroscopy) resulting from the use of an organic solvent (methanol) as reaction medium. To the best of the author’s knowledge, this synthesis approach is the first report of tetragonal BT nanoparticles synthesized in methanol without the addition of extra water and without the need for a post-synthetic calcination step. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Figure 1

19 pages, 4231 KiB  
Article
Design and Synthesis of a New Photoluminescent 2D Coordination Polymer Employing a Ligand Derived from Quinoline and Pyridine
by Andrzej Kochel, Małgorzata Hołyńska, Aneta Jezierska and Jarosław J. Panek
Crystals 2025, 15(8), 691; https://doi.org/10.3390/cryst15080691 - 30 Jul 2025
Viewed by 529
Abstract
Application of organic ligand 2-(3-ethyl-pyrazin-2-yl)quinoline-4-carboxylate with N/O donor atoms enabled solvothermal synthesis of a 2D Cu(II) coordination polymer, {Cu(L)BF4}n (L = deprotonated 2-(3-ethyl-pyrazin-2-yl)quinoline-4-carboxylate). Both the ligand and its coordination polymer have been characterized. The condensed ring system of the applied [...] Read more.
Application of organic ligand 2-(3-ethyl-pyrazin-2-yl)quinoline-4-carboxylate with N/O donor atoms enabled solvothermal synthesis of a 2D Cu(II) coordination polymer, {Cu(L)BF4}n (L = deprotonated 2-(3-ethyl-pyrazin-2-yl)quinoline-4-carboxylate). Both the ligand and its coordination polymer have been characterized. The condensed ring system of the applied ligand promotes the formation of coordination polymers rather than mononuclear species. The obtained 2D coordination polymer is photoluminescent with bathochromic/hypsochromic shifts in ligand absorption bands leading to a single absorption band at 465 nm. Density Functional Theory was employed to provide a theoretical description of the possible conformational changes within the ligand, with emphasis on the difference between the ligand conformation in its hydrochloride salt and in the polymer. Two models of polymer fragments were constructed to describe the electronic structure and non-covalent interactions. The Quantum Theory of Atoms in Molecules (QTAIM) was applied for this purpose. Using the obtained results, we were able to develop potential energy profiles for various conformations of the ligand. For the set of the studied systems, we detected non-covalent interactions, which are responsible for the spatial conformation. Concerning the models of polymers, electron spin density distribution has been visualized and discussed. Full article
(This article belongs to the Special Issue Research Progress of Photoluminescent Materials)
Show Figures

Figure 1

21 pages, 3418 KiB  
Article
Tunable Optical Bandgap and Enhanced Visible Light Photocatalytic Activity of ZnFe2O3-Doped ZIF-8 Composites for Sustainable Environmental Remediation
by Fatma Alharbi, Taymour Hamdalla, Hanan Al-Ghamdi, Badriah Albarzan and Ahmed Darwish
Catalysts 2025, 15(8), 720; https://doi.org/10.3390/catal15080720 - 29 Jul 2025
Viewed by 419
Abstract
Metal–organic frameworks (MOFs), particularly ZIF-8, have emerged as promising materials due to their high porosity, tunability, and chemical stability. In this study, we report the synthesis of ZnFe2O3-doped ZIF-8 composites with 10 wt% loading via a solvothermal method to [...] Read more.
Metal–organic frameworks (MOFs), particularly ZIF-8, have emerged as promising materials due to their high porosity, tunability, and chemical stability. In this study, we report the synthesis of ZnFe2O3-doped ZIF-8 composites with 10 wt% loading via a solvothermal method to enhance their optical and photocatalytic performance. Structural analyses confirmed the successful incorporation of ZnFe2O3 without disrupting the ZIF-8 framework. Optical studies revealed enhanced absorption in the visible range, a narrowed bandgap (4.26 eV vs. 4.37 eV for pristine ZIF-8), and an increased extinction coefficient, indicating superior light-harvesting potential. The photocatalytic activity was evaluated by methylene blue (MB) degradation under visible light, where the 10 wt% ZnFe2O3-ZIF-8 composite achieved 90% degradation efficiency, outperforming pristine ZIF-8 (67.8%). The catalyst also demonstrated excellent recyclability over five cycles and a proposed degradation mechanism involving ·OH and ·O2 radical formation. These findings demonstrate the potential of highly doped ZnFe2O3@ZIF-8 composites for environmental remediation and photonic applications. Full article
(This article belongs to the Special Issue Catalysis Accelerating Energy and Environmental Sustainability)
Show Figures

Graphical abstract

20 pages, 4256 KiB  
Review
Recent Progress and Future Perspectives of MNb2O6 Nanomaterials for Photocatalytic Water Splitting
by Parnapalle Ravi and Jin-Seo Noh
Materials 2025, 18(15), 3516; https://doi.org/10.3390/ma18153516 - 27 Jul 2025
Viewed by 336
Abstract
The transition to clean and renewable energy sources is critically dependent on efficient hydrogen production technologies. This review surveys recent advances in photocatalytic water splitting, focusing on MNb2O6 nanomaterials, which have emerged as promising photocatalysts due to their tunable band [...] Read more.
The transition to clean and renewable energy sources is critically dependent on efficient hydrogen production technologies. This review surveys recent advances in photocatalytic water splitting, focusing on MNb2O6 nanomaterials, which have emerged as promising photocatalysts due to their tunable band structures, chemical robustness, and tailored morphologies. The objectives of this work are to (i) encompass the current synthesis strategies for MNb2O6 compounds; (ii) assess their structural, electronic, and optical properties in relation to photocatalytic performance; and (iii) elucidate the mechanisms underpinning enhanced hydrogen evolution. Main data collection methods include a literature review of experimental studies reporting bandgap measurements, structural analyses, and hydrogen production metrics for various MNb2O6 compositions—especially those incorporating transition metals such as Mn, Cu, Ni, and Co. Novelty stems from systematically detailing the relationships between synthesis routes (hydrothermal, solvothermal, electrospinning, etc.), crystallographic features, conductivity type, and bandgap tuning in these materials, as well as by benchmarking their performance against more conventional photocatalyst systems. Key findings indicate that MnNb2O6, CuNb2O6, and certain engineered heterostructures (e.g., with g-C3N4 or TiO2) display significant visible-light-driven hydrogen evolution, achieving hydrogen production rates up to 146 mmol h−1 g−1 in composite systems. The review spotlights trends in heterojunction design, defect engineering, co-catalyst integration, and the extension of light absorption into the visible range, all contributing to improved charge separation and catalytic longevity. However, significant challenges remain in realizing the full potential of the broader MNb2O6 family, particularly regarding efficiency, scalability, and long-term stability. The insights synthesized here serve as a guide for future experimental investigations and materials design, advancing the deployment of MNb2O6-based photocatalysts for large-scale, sustainable hydrogen production. Full article
Show Figures

Figure 1

31 pages, 832 KiB  
Review
Depolymerization to Decontamination: Transforming PET Waste into Tailored MOFs for Advanced Pollutant Adsorption
by Asma Nouira and Imene Bekri-Abbes
Physchem 2025, 5(3), 28; https://doi.org/10.3390/physchem5030028 - 19 Jul 2025
Viewed by 802
Abstract
Plastic waste and water pollution demand circular economy-driven innovations. This review examines metal–organic framework (MOF) synthesis from polyethylene terephthalate (PET) waste for wastewater treatment. Depolymerized PET yields terephthalic acid and ethylene glycol—essential MOF precursors. We evaluate the following: (1) PET depolymerization (hydrolysis, glycolysis, [...] Read more.
Plastic waste and water pollution demand circular economy-driven innovations. This review examines metal–organic framework (MOF) synthesis from polyethylene terephthalate (PET) waste for wastewater treatment. Depolymerized PET yields terephthalic acid and ethylene glycol—essential MOF precursors. We evaluate the following: (1) PET depolymerization (hydrolysis, glycolysis, ammonolysis) for monomer recovery efficiency; (2) MOF synthesis (solvothermal, microwave, mechanochemical) using PET-derived linkers; (3) performance in adsorbing heavy metals, dyes, and emerging contaminants. PET-based MOFs match or exceed commercial adsorbents in pollutant removal while lowering costs. Their tunable porosity and surface chemistry enhance selectivity and capacity. By converting waste plastics into functional materials, this strategy tackles dual challenges: diverting PET from landfills and purifying water. The review underscores the environmental and economic benefits of waste-sourced MOFs, proposing scalable routes for sustainable water remediation aligned with zero-waste goals. Full article
(This article belongs to the Section Surface Science)
Show Figures

Figure 1

14 pages, 3096 KiB  
Article
Photoelectrochemical CO2 Reduction Measurements of a BiOI Coating Deposited onto a Non-Conductive Glass Support as a Platform for Environmental Remediation
by J. Manuel Mora-Hernandez and A. Hernández-Ramírez
Processes 2025, 13(7), 2292; https://doi.org/10.3390/pr13072292 - 18 Jul 2025
Viewed by 567
Abstract
Aiming to contribute to environmental remediation strategies, this work proposes a novel fabrication of photoelectrocatalytic electrodes containing a BiOI coating deposited onto non-conductive glass (NCG) for CO2 conversion applications. When BiOI electrodes are not deposited onto fluorine-doped tin oxide (FTO) or indium [...] Read more.
Aiming to contribute to environmental remediation strategies, this work proposes a novel fabrication of photoelectrocatalytic electrodes containing a BiOI coating deposited onto non-conductive glass (NCG) for CO2 conversion applications. When BiOI electrodes are not deposited onto fluorine-doped tin oxide (FTO) or indium tin oxide (ITO) conductive supports, the electrochemical measurements enable the registration of the (photo)electrochemical response for bare BiOI, thereby excluding remnant signals from the conductive supports and reporting an exclusive and proper photoelectrocatalytic BiOI response. A systematic procedure was carried out to improve the physicochemical properties of BiOI through a simple variation in the amount of reagents employed in a solvothermal synthesis, thus increasing the crystallite size and surface area of the resulting material (BiOI-X3-20wt.%). The tailored BiOI coating on a non-conductive support showed activity in performing CO2 photoelectroreduction under UV–Vis irradiation in aqueous media. Finally, the BiOI-X3-20wt.% sample was evaluated for photocatalytic CO2 conversion in gaseous media, producing CO as the primary reaction product. This study confirms that BiOI is a suitable and easily synthesized material, with potential applications for CO2 capture and conversion when employed as a photoactive coating for environmental remediation. Full article
(This article belongs to the Special Issue Advanced Application of Photoelectrocatalysis for Energy Conversion)
Show Figures

Graphical abstract

21 pages, 4609 KiB  
Review
Covalent Organic Framework Membranes for Ion Separation: A Review
by Yutong Lou, Zhanyong Wang, Wanbei Yang, Shuchen Lang, Jiaxing Fan, Qiaomei Ke, Rui Wang, Zhen Zhang, Wentao Chen and Jian Xue
Membranes 2025, 15(7), 211; https://doi.org/10.3390/membranes15070211 - 15 Jul 2025
Viewed by 997
Abstract
Covalent organic framework (COF) membranes have garnered significant attention in ion separation due to their high surface area, tunable pore size, excellent stability, and diverse functional groups. Over the past decade, various synthesis methods, such as solvothermal synthesis, interfacial synthesis, microwave-assisted solvothermal synthesis, [...] Read more.
Covalent organic framework (COF) membranes have garnered significant attention in ion separation due to their high surface area, tunable pore size, excellent stability, and diverse functional groups. Over the past decade, various synthesis methods, such as solvothermal synthesis, interfacial synthesis, microwave-assisted solvothermal synthesis, and in situ growth, have been developed to fabricate COF membranes. COF membranes have demonstrated remarkable ion separation performance in different separation processes driven by pressure, electric field, and vapor pressure difference, showing great potential in a wide range of applications. Nevertheless, challenges in the synthesis and application of COF membranes still remain, requiring further research to fully realize their potential in ion separation. This review critically examines the development of COF membranes, from synthesis methods to ion separation applications. We evaluate the advantages and limitations of various synthesis techniques and systematically summarize COF membrane performance based on separation driving forces. Finally, we present a critical analysis of current challenges and offer perspectives on promising future research directions for advancing COF membrane technology in separation. Full article
(This article belongs to the Section Membrane Applications for Water Treatment)
Show Figures

Figure 1

26 pages, 10223 KiB  
Article
Silver–Titania Nanocomposites for Photothermal Applications
by Leonardo Bottacin, Roberto Zambon, Francesca Tajoli, Veronica Zani, Roberto Pilot, Naida El Habra, Silvia Gross and Raffaella Signorini
Gels 2025, 11(6), 461; https://doi.org/10.3390/gels11060461 - 16 Jun 2025
Viewed by 553
Abstract
Local temperature measurement is crucial for understanding nanoscale thermal transport and developing nanodevices for biomedical, photonic, and optoelectronic applications. The rise of photothermal therapy for cancer treatment has increased the demand for high-resolution nanothermometric techniques capable of non-contact intracellular temperature measurement and modification. [...] Read more.
Local temperature measurement is crucial for understanding nanoscale thermal transport and developing nanodevices for biomedical, photonic, and optoelectronic applications. The rise of photothermal therapy for cancer treatment has increased the demand for high-resolution nanothermometric techniques capable of non-contact intracellular temperature measurement and modification. Raman spectroscopy meets this need: the ratio of anti-Stokes to Stokes Raman intensities for a specific vibrational mode correlates with local temperature through the Boltzmann distribution. The present study proposes a novel photothermal therapy agent designed to advance the current state of the art while adhering to green chemistry principles, thereby favoring low-temperature synthesis involving limited energy consumption. A key challenge in this field is to achieve close contact between plasmonic nanosystems, which act as nanoheaters, and local temperature sensors. This is achieved by employing silver nanoparticles as a heat release agent, coated with anatase-phase titanium dioxide, as a local temperature sensor. The proposed synthesis, which combines refluxing and subcritical solvothermal treatments, enables direct anatase formation, despite its metastability under standard conditions, thus eliminating the need for a calcination step. Structural characterization through SAED-HRTEM and Raman spectroscopy confirms the successful crystallization of the desired phase. Moreover, the nanothermometry measurements conducted at various wavelengths ultimately demonstrate both the effectiveness of these nanomaterials as thermometric probes, with a relative sensitivity of about 0.24 K−1%, and their capability as local heaters, with a release of a few tens of degrees. This work demonstrates a new synthetic strategy for these nanocomposites, which offers a promising pathway for the optimization of nanosystems in therapeutic applications. Full article
Show Figures

Graphical abstract

8 pages, 1018 KiB  
Communication
Construction of a Symmetrical Bi-Hydroxamate Metal–Organic Framework with Chemical Robustness
by Yue Dong, Chaozhi Xiong, Zhen-Wu Shao and Chong Liu
Symmetry 2025, 17(6), 895; https://doi.org/10.3390/sym17060895 - 6 Jun 2025
Viewed by 447
Abstract
Recently, the emerging class of hydroxamate-based metal–organic frameworks (MOFs) has demonstrated significant structural diversity and chemical robustness, both essential for potential applications. Combining the favorable hard–hard Bi-O interactions and chelating chemistry of hydroxamate groups, a rigid and symmetrical three-dimensional bismuth-hydroxamate metal–organic framework was [...] Read more.
Recently, the emerging class of hydroxamate-based metal–organic frameworks (MOFs) has demonstrated significant structural diversity and chemical robustness, both essential for potential applications. Combining the favorable hard–hard Bi-O interactions and chelating chemistry of hydroxamate groups, a rigid and symmetrical three-dimensional bismuth-hydroxamate metal–organic framework was successfully prepared via solvothermal synthesis and structurally elucidated via X-ray crystallography. The MOF, namely SUM-91 (SUM = Sichuan University Materials), features one-dimensional Bi-oxo secondary building blocks (SBUs), which are bridged by chelating 1,4-benzenedihydroxamate linkers. With the demonstrated permanent porosity and molecular sieving effect (CO2 vs. N2), SUM-91 was also found to be stable under harsh chemical conditions (aqueous solutions with pH = 2–12 and various organic solvents). As the structural robustness of SUM-91 could be attributed to the finetuning of the coordinative sphere of Bi centers, this work shed light on the further development of (ultra-)microporous materials with high stability and selective adsorption properties. Full article
(This article belongs to the Section Chemistry: Symmetry/Asymmetry)
Show Figures

Graphical abstract

14 pages, 2373 KiB  
Article
Isomeric Anthraquinone-Based Covalent Organic Frameworks for Boosting Photocatalytic Hydrogen Peroxide Generation
by Shengrong Yan, Songhu Shi, Wenhao Liu, Fang Duan, Shuanglong Lu and Mingqing Chen
Catalysts 2025, 15(6), 556; https://doi.org/10.3390/catal15060556 - 3 Jun 2025
Viewed by 632
Abstract
Utilizing isomeric monomers to construct covalent organic frameworks (COFs) could easily and precisely regulate their structure in order to raise the photocatalytic performance towards two-step single-electron oxygen reduction reaction (ORR) to hydrogen peroxide (H2O2). Herein, isomeric anthraquinone (AQ)-based COFs [...] Read more.
Utilizing isomeric monomers to construct covalent organic frameworks (COFs) could easily and precisely regulate their structure in order to raise the photocatalytic performance towards two-step single-electron oxygen reduction reaction (ORR) to hydrogen peroxide (H2O2). Herein, isomeric anthraquinone (AQ)-based COFs (designated as 1,4-DQTP and 2,6-DQTP) were successfully fabricated through a simple yet effective one-step solvothermal synthesis approach, only utilizing isomeric monomers with alterations in the catalysts. Specifically, the black 1,4-DQTP displayed a high photocatalytic H2O2 production rate of 865.4 µmol g−1 h−1, with 2.44-fold enhancement compared to 2,6-DQTP (354.7 µmol g−1 h−1). Through a series of experiments such as electron paramagnetic resonance (EPR) spectroscopy and the free radical quenching experiments, as well as density functional theory (DFT) calculations, the photocatalytic mechanism revealed that compared with 2,6-DQTP, 1,4-DQTP possessed a stronger and broader visible light absorption capacity, and thus generated more photogenerated e-h+ pairs. Ultimately, more photogenerated electrons were enriched on the AQ motif via a more apparent electron push–pull effect, which provided a stable transfer channel for e and thus facilitated the generation of superoxide anion radical intermediates (•O2). On the other hand, the negative charge region of AQ’s carbonyl group evidently overlapped with that of TP, indicating that 1,4-DQTP had a higher chemical affinity for the uptake of protons, and thus afforded a more favorable hydrogen donation for H+. As a consequence, the rational design of COFs utilizing isomeric monomers could synergistically raise the proton-coupled electron transfer (PCET) kinetics for two-step single-electron ORR to H2O2 under visible light illumination. This work provides some insights for the design and fabrication of COFs through rational isomer engineering to modulate their photocatalytic activities. Full article
(This article belongs to the Special Issue Nanostructured Photocatalysts for Hydrogen Production)
Show Figures

Graphical abstract

24 pages, 4825 KiB  
Article
Optimized Construction of Highly Efficient P-Bi2MoO6/g-C3N4 Photocatalytic Bactericide: Based on Source Material and Synthesis Process
by Leilei Xue, Jie Zhang, Mengmeng Sun, Hui Zhang, Ke Wang, Debao Wang and Ruiyong Zhang
Nanomaterials 2025, 15(11), 834; https://doi.org/10.3390/nano15110834 - 30 May 2025
Cited by 1 | Viewed by 432
Abstract
In this study, Bi2MoO6 nanoflowers with different molybdenum sources were in situ grown on the surface of g-C3N4 nanosheets (OCN) by a simple one-step solvothermal method. The effects of doping and different molybdenum sources on the photocatalytic [...] Read more.
In this study, Bi2MoO6 nanoflowers with different molybdenum sources were in situ grown on the surface of g-C3N4 nanosheets (OCN) by a simple one-step solvothermal method. The effects of doping and different molybdenum sources on the photocatalytic degradation and bactericidal activity of Bi2MoO6/OCN were discussed. Among them, the solvothermal preparation of P-Bi2MoO6/OCN using phosphomolybdic acid as molybdenum source can make up for the shortcomings caused by the destruction of OCN structure by generating more lattice defects to promote charge separation and constructing Lewis acid/base sites to effectively improve the photocatalytic performance. In addition, by adding phosphoric acid to increase the P-doped content, more exposed alkaline active sites are induced on the surface of P-Bi2MoO6/OCN, as well as larger specific surface area and charge transfer efficiency, which further improve the photocatalytic performance. Finally, the optimized 16P-Bi2MoO6/OCN showed a degradation rate of 99.7% for 20 mg/L rhodamine B (RhB) within 80 min under visible light, and the antibacterial rates against E. coli, S. aureus and P. aeruginosa within 300 min were 99.58%, 98.20% and 97.48%, respectively. This study provides a reference for optimizing the synthesis of environmentally friendly, solar-responsive, photocatalytic sterilization materials from the perspective of preparation, raw materials and structure. Full article
(This article belongs to the Special Issue Heterogeneous Photocatalysts Based on Nanocomposites)
Show Figures

Graphical abstract

16 pages, 5111 KiB  
Article
One-Pot Synthesis of Magnetic Core-Shell Fe3O4@C Nanospheres with Pt Nanoparticle Immobilization for Catalytic Hydrogenation of Nitroarenes
by Jun Qiao, Yang Gao, Kai Zheng, Chao Shen, Aiquan Jia and Qianfeng Zhang
Appl. Sci. 2025, 15(10), 5773; https://doi.org/10.3390/app15105773 - 21 May 2025
Viewed by 625
Abstract
Magnetic materials with intriguing structural and functional modifications demonstrate broad application potential in various fields, including drug delivery, absorption, extraction, separation, and catalysis. In particular, the catalytic hydrogenation of functionalized organic nitro compounds represents a significant research focus in contemporary catalysis studies. A [...] Read more.
Magnetic materials with intriguing structural and functional modifications demonstrate broad application potential in various fields, including drug delivery, absorption, extraction, separation, and catalysis. In particular, the catalytic hydrogenation of functionalized organic nitro compounds represents a significant research focus in contemporary catalysis studies. A facile synthesis of Fe3O4@C–Pt core-shell nanocatalysts was developed in this work through a sequential process involving (1) one-pot hydrothermal synthesis followed by N2-annealing to obtain the Fe3O4@C core and (2) subsequent solvothermal deposition of platinum nanoparticles. Comprehensive characterization was performed using FT-IR, XRD, Raman spectroscopy, TEM, XPS, BET surface area analysis, TGA, and VSM techniques. The resulting magnetic nanocatalysts exhibited uniformly dispersed Pt nanoparticles and demonstrated exceptional catalytic performance in nitroarene hydrogenation reactions. Remarkably, the system showed excellent functional group tolerance across all 20 substituted nitroarenes, consistently yielding corresponding aromatic amine products with >93% conversion efficiency. Furthermore, the magnetic responsiveness of Fe3O4@C–Pt enabled convenient catalyst recovery through simple magnetic separation, with maintained catalytic activity over 10 consecutive reuse cycles without significant performance degradation. Full article
Show Figures

Figure 1

7 pages, 5843 KiB  
Proceeding Paper
Solvothermal Synthesis of Nanomagnetite-Coated Biochar for Efficient Arsenic and Fluoride Adsorption
by Diego-Antonio Corona-Martinez, Lourdes Díaz-Jiménez, Audberto Reyes-Rosas, Alejandro Zermeño-González, Luis Samaniego-Moreno and Sasirot Khamkure
Eng. Proc. 2025, 87(1), 67; https://doi.org/10.3390/engproc2025087067 - 16 May 2025
Viewed by 245
Abstract
Arsenic contamination in water demands effective, low-cost removal methods. This study introduces nanomagnetite-coated biochar derived from pecan nutshells for efficient arsenic adsorption. Utilizing a solvothermal method, uniform magnetite crystals were grown on biochar in a controlled process at 200 °C. The resulting bioadsorbent, [...] Read more.
Arsenic contamination in water demands effective, low-cost removal methods. This study introduces nanomagnetite-coated biochar derived from pecan nutshells for efficient arsenic adsorption. Utilizing a solvothermal method, uniform magnetite crystals were grown on biochar in a controlled process at 200 °C. The resulting bioadsorbent, characterized by XRD, SEM, and FTIR, exhibited a narrow size distribution and consistently high arsenic removal rates (97.30–98.76%). Biochar with varied particle sizes, synthesized at a short reaction time (6 h), showed the highest removal efficiency of arsenic (98.76%) and adsorption capacity (7.974 mg/g). This approach offers a sustainable for arsenic remediation, and ease of magnetic separation. Full article
(This article belongs to the Proceedings of The 5th International Electronic Conference on Applied Sciences)
Show Figures

Figure 1

15 pages, 4851 KiB  
Article
Shape-Engineering and Mechanism Investigation of AgCl Microcrystals
by Chunli Cai, Qian Wang, Changsheng Yin, Xuhuan Li, Rong Yang, Xiaodong Shen and Wenbo Xin
Crystals 2025, 15(5), 451; https://doi.org/10.3390/cryst15050451 - 10 May 2025
Cited by 1 | Viewed by 407
Abstract
AgCl microcrystals are used in visible light photocatalysis. However, their properties depend strongly on the morphology of the crystals and the degree of exposure of the crystal planes. Despite extensive research conducted on the synthesis of AgCl microcrystals, the majority of existing studies [...] Read more.
AgCl microcrystals are used in visible light photocatalysis. However, their properties depend strongly on the morphology of the crystals and the degree of exposure of the crystal planes. Despite extensive research conducted on the synthesis of AgCl microcrystals, the majority of existing studies have focused on the stable growth of crystals. The role of Cl ions concentration as a key factor controlling the microcrystals morphology has not been fully explored, which limits the precise tuning of the morphology of AgCl microcrystals. In this study, AgCl microcrystals with controllable morphology are successfully synthesized by a facile solvothermal method. During the preparation process, ethylene glycol (EG) is utilized as a solvent, while polyvinylpyrrolidone (PVP) is employed as a surfactant. We systematically investigate the etching mechanism of AgCl microcrystals by analyzing the effect of sodium chloride (NaCl) concentration on their morphology. This investigation involves the integration of diverse characterization methods, including scanning electron microscopy (SEM), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS), and geometrical struc-ture analysis. The results demonstrate that Cl functions as both a surfactant, thereby promoting the nucleation of cubic microcrystals, and as an etchant, selectively etching the crystal surface. The order of selective etching on the crystal surface follows (100) planes > (110) planes > (111) planes. Based on this new mechanism, AgCl microcrystals with various morphologies, such as cube, octopod and dendrite, are successfully prepared, which provides a new idea for the precise design of noble metal halide microcrystals. Full article
(This article belongs to the Section Crystal Engineering)
Show Figures

Figure 1

Back to TopTop