ZnO and ZnO-Based Materials as Active Layer in Resistive Random-Access Memory (RRAM)
Abstract
:1. Introduction
2. RRAM Mechanism
2.1. Resistive Switching
2.2. Activation Process
2.3. Material for Electrodes
2.4. Material for Active Layer
2.4.1. Organic Materials
2.4.2. Inorganic Materials
3. ZnO as Active Layer
4. Modulation Mechanisms and Utilizing ZnO and 1D/2D Materials
4.1. Influencing Pure ZnO Monolayer
4.2. 2D Materials
4.3. 1D Materials
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Carlos, E.; Branquinho, R.; Martins, R.; Kiazadeh, A.; Fortunato, E. Recent Progress in Solution-Based Metal Oxide Resistive Switching Devices. Adv. Mater. 2021, 33, 2004328. [Google Scholar] [CrossRef] [PubMed]
- Gupta, V.; Kapur, S.; Saurabh, S.; Grover, A. Resistive Random Access Memory: A Review of Device Challenges. IEEE Trans. Electron Devices 2020, 37, 377–390. [Google Scholar] [CrossRef]
- Zahoor, F.; Azni Zulkifli, T.Z.; Khanday, F.A. Resistive Random Access Memory (RRAM): An Overview of Materials, Switching Mechanism, Performance, Multilevel Cell (Mlc) Storage, Modeling, and Applications. Nanoscale Res. Lett. 2020, 15, 90. [Google Scholar] [CrossRef] [PubMed]
- Mahata, C.; Park, J.; Ismail, M.; Kim, D.H.; Kim, S. Improved Resistive Switching with Low-Power Synaptic Behaviors of ZnO/Al2O3 Bilayer Structure. Materials 2022, 15, 6663. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.; Gao, B.; Xu, F.; Yao, P.; Chen, J.; Zhang, W.; Tang, J.; Wu, H.; Qian, H. A Compact Model of Analog RRAM with Device and Array Nonideal Effects for Neuromorphic Systems. IEEE Trans. Electron Devices 2020, 67, 1593–1599. [Google Scholar] [CrossRef]
- Mohammad, B.; Jaoude, M.A.; Kumar, V.; Al Homouz, D.M.; Nahla, H.A.; Al-Qutayri, M.; Christoforou, N. State of the Art of Metal Oxide Memristor Devices. Nanotechnol. Rev. 2016, 5, 311–329. [Google Scholar] [CrossRef]
- Fauzi, F.B.; Ani, M.H.; Herman, S.H.; Mohamed, M.A. Dilute Electrodeposition of TiO2 and ZnO Thin Film Memristors on Cu Substrate. IOP Conf. Ser. Mater. Sci. Eng. 2018, 340, 012006. [Google Scholar] [CrossRef]
- Hu, W.; Yang, B.; Zhang, Y.; She, Y. Recent Progress in Physically Transient Resistive Switching Memory. J. Mater. Chem. C Mater. 2020, 8, 14695–14710. [Google Scholar] [CrossRef]
- Shi, T.; Wang, R.; Wu, Z.; Sun, Y.; An, J.; Liu, Q. A Review of Resistive Switching Devices: Performance Improvement, Characterization, and Applications. Small Struct. 2021, 2, 2000109. [Google Scholar] [CrossRef]
- Anonymous. Beyond von Neumann. Nat. Nanotechnol. 2020, 15, 507. [Google Scholar] [CrossRef]
- Shen, Z.; Zhao, C.; Qi, Y.; Xu, W.; Liu, Y.; Mitrovic, I.Z.; Yang, L.; Zhao, C. Advances of RRAM Devices: Resistive Switching Mechanisms, Materials and Bionic Synaptic Application. Nanomaterials 2020, 10, 1437. [Google Scholar] [CrossRef]
- Yu, S.; Lee, B.; Wong, H.-S.P. Metal Oxide Resistive Switching Memory. In Springer Series in Materials Science; Springer: Berlin, Germany, 2012; Volume 149, pp. 303–335. ISBN 9781441999306. [Google Scholar]
- Rehman, M.M.; Rehman, H.M.M.U.; Gul, J.Z.; Kim, W.Y.; Karimov, K.S.; Ahmed, N. Decade of 2D-Materials-Based RRAM Devices: A Review. Sci. Technol. Adv. Mater. 2020, 21, 147–186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeong, D.S.; Thomas, R.; Katiyar, R.S.; Scott, J.F.; Kohlstedt, H.; Petraru, A.; Hwang, C.S. Emerging Memories: Resistive Switching Mechanisms and Current Status. Rep. Prog. Phys. 2012, 75, 076502. [Google Scholar] [CrossRef] [PubMed]
- Wong, H.S.P.; Lee, H.Y.; Yu, S.; Chen, Y.S.; Wu, Y.; Chen, P.S.; Lee, B.; Chen, F.T.; Tsai, M.J. Metal-Oxide RRAM. Proc. IEEE 2012, 100, 1951–1970. [Google Scholar] [CrossRef]
- Strukov, D.B.; Snider, G.S.; Stewart, D.R.; Williams, R.S. The Missing Memristor Found. Nature 2008, 453, 80–83. [Google Scholar] [CrossRef]
- Yang, R. Review of Resistive Switching Mechanisms for Memristive Neuromorphic Devices. Chin. Phys. B 2020, 29, 094305. [Google Scholar] [CrossRef]
- Grossi, A.; Zambelli, C.; Olivo, P.; Miranda, E.; Stikanov, V.; Walczyk, C.; Wenger, C. Electrical Characterization and Modeling of Pulse-Based Forming Techniques in RRAM Arrays. Solid State Electron. 2016, 115, 17–25. [Google Scholar] [CrossRef] [Green Version]
- Snyder, E.S.; Suehle, J. Detecting Breakdown in Ultra-Thin Dielectrics Using a Fast Voltage Ramp. In Proceedings of the 1999 IEEE International Integrated Reliability Workshop Final Report (Cat. No. 99TH8460), Lake Tahoe, CA, USA, 18–21 October 1999; pp. 118–123. [Google Scholar] [CrossRef]
- Grossi, A.; Walczyk, D.; Zambelli, C.; Miranda, E.; Olivo, P.; Stikanov, V.; Feriani, A.; Sune, J.; Schoof, G.; Kraemer, R.; et al. Impact of Intercell and Intracell Variability on Forming and Switching Parameters in RRAM Arrays. IEEE Trans. Electron Devices 2015, 62, 2502–2509. [Google Scholar] [CrossRef]
- Kalantarian, A.; Bersuker, G.; Gilmer, D.C.; Veksler, D.; Butcher, B.; Padovani, A.; Pirrotta, O.; Larcher, L.; Geer, R.; Nishi, Y.; et al. Controlling Uniformity of RRAM Characteristics through the Forming Process. In Proceedings of the 2012 IEEE International Reliability Physics Symposium (IRPS), Anaheim, CA, USA, 15–19 April 2012; pp. 3–7. [Google Scholar] [CrossRef]
- Lim, E.W.; Ismail, R. Conduction Mechanism of Valence Change Resistive Switching Memory: A Survey. Electronics 2015, 4, 586–613. [Google Scholar] [CrossRef]
- Valov, I.; Yang, Y. Memristors with Alloyed Electrodes. Nat. Nanotechnol. 2020, 15, 510–511. [Google Scholar] [CrossRef]
- Khrapovitskaya, Y.V.; Maslova, N.E.; Grishchenko, Y.V.; Demin, V.A.; Zanaveskin, M.L. The Effect of the Memristor Electrode Material on Its Resistance to Degradation under Conditions of Cyclic Switching. Tech. Phys. Lett. 2014, 40, 317–319. [Google Scholar] [CrossRef]
- Kumar, A.; Baghini, M.S. Experimental Study for Selection of Electrode Material for ZnO-Based Memristors. Electron. Lett. 2014, 50, 1547–1549. [Google Scholar] [CrossRef]
- Swathi, S.P.; Angappane, S. Digital and Analog Resistive Switching in NiO-Based Memristor by Electrode Engineering. Jpn. J. Appl. Phys. 2022, 61, SM1009. [Google Scholar] [CrossRef]
- Avilov, V.I.; Kolomiytsev, A.S.; Tominov, R.V.; Alyabyeva, N.I.; Bykova, E.M. Investigation of the Electrode Material Influence on the Titanium Oxide Nanosize Structures Memristor Effect. J. Phys. Conf. Ser. 2018, 1124, 022019. [Google Scholar] [CrossRef]
- Gale, E.; De Lacy Costello, B.; Adamatzky, A. The Effect of Electrode Size on Memristor Properties: An Experimental and Theoretical Study. In Proceedings of the2012 IEEE International Conference on Electronics Design, Systems and Applications (ICEDSA), Kuala Lumpur, Malaysia, 5–6 November 2012; pp. 80–85. [Google Scholar] [CrossRef] [Green Version]
- Gale, E.M.; Costello, B.D.L.; Adamatzky, A. Which Memristor Theory Is Best for Relating Devices Properties to Memristive Function? arXiv 2013, arXiv:1312.4422. [Google Scholar]
- Schroeder, H.; Pandian, R.; Miao, J. Resistive Switching and Changes in Microstructure. Phys. Status Solidi (A) Appl. Mater. Sci. 2011, 208, 300–316. [Google Scholar] [CrossRef]
- Lee, S.H.; Park, H.L.; Kim, M.H.; Kang, S.; Lee, S.D. Interfacial Triggering of Conductive Filament Growth in Organic Flexible Memristor for High Reliability and Uniformity. ACS Appl. Mater. Interfaces 2019, 11, 30108–30115. [Google Scholar] [CrossRef]
- Sun, B.; Zhou, G.; Guo, T.; Zhou, Y.N.; Wu, Y.A. Biomemristors as the next Generation Bioelectronics. Nano Energy 2020, 75, 104938. [Google Scholar] [CrossRef]
- Battistoni, S.; Dimonte, A.; Erokhin, V. Organic Memristor Based Elements for Bio-Inspired Computing. In Advances in Unconventional Computing. Emergence, Complexity and Computation; Springer: Cham, Switzerland, 2017; pp. 469–496. [Google Scholar] [CrossRef]
- Berzina, T.; Erokhina, S.; Camorani, P.; Konovalov, O.; Erokhin, V.; Fontana, M.P. Electrochemical Control of the Conductivity in an Organic Memristor: A Time-Resolved X-Ray Fluorescence Study of Ionic Drift as a Function of the Applied Voltage. ACS Appl. Mater. Interfaces 2009, 1, 2115–2118. [Google Scholar] [CrossRef]
- Berzina, T.; Smerieri, A.; Bernab, M.; Pucci, A.; Ruggeri, G.; Erokhin, V.; Fontana, M.P. Optimization of an Organic Memristor as an Adaptive Memory Element. J. Appl. Phys. 2009, 105, 124515. [Google Scholar] [CrossRef]
- Erokhin, V.; Howard, G.D.; Adamatzky, A. Organic Memristor Devices for Logic Elements with Memory. Int. J. Bifurc. Chaos 2012, 22, 1–9. [Google Scholar] [CrossRef]
- Xu, X.; Cho, E.J.; Bekker, L.; Talin, A.A.; Lee, E.; Pascall, A.J.; Worsley, M.A.; Zhou, J.; Cook, C.C.; Kuntz, J.D.; et al. A Bioinspired Artificial Injury Response System Based on a Robust Polymer Memristor to Mimic a Sense of Pain, Sign of Injury, and Healing. Adv. Sci. 2022, 9, 629. [Google Scholar] [CrossRef]
- Zhou, Z.; Mao, H.; Wang, X.; Sun, T.; Chang, Q.; Chen, Y.; Xiu, F.; Liu, Z.; Liu, J.; Huang, W. Transient and Flexible Polymer Memristors Utilizing Full-Solution Processed Polymer Nanocomposites. Nanoscale 2018, 10, 14824–14829. [Google Scholar] [CrossRef]
- Park, H.L.; Kim, M.H.; Kim, M.H.; Lee, S.H. Reliable Organic Memristors for Neuromorphic Computing by Predefining a Localized Ion-Migration Path in Crosslinkable Polymer. Nanoscale 2020, 12, 22502–22510. [Google Scholar] [CrossRef]
- Lee, S.H.; Park, H.L.; Keum, C.M.; Lee, I.H.; Kim, M.H.; Lee, S.D. Organic Flexible Memristor with Reduced Operating Voltage and High Stability by Interfacial Control of Conductive Filament Growth. Phys. Status Solidi Rapid Res. Lett. 2019, 13, 1900044. [Google Scholar] [CrossRef] [Green Version]
- Park, H.L.; Lee, T.W. Organic and Perovskite Memristors for Neuromorphic Computing. Org. Electron. 2021, 98, 106301. [Google Scholar] [CrossRef]
- Jaafar, A.H.; Al Chawa, M.M.; Cheng, F.; Kelly, S.M.; Picos, R.; Tetzlaff, R.; Kemp, N.T. Polymer/TiO2Nanorod Nanocomposite Optical Memristor Device. J. Phys. Chem. C 2021, 125, 14965–14973. [Google Scholar] [CrossRef]
- Yang, X.; Wang, C.; Shang, J.; Zhang, C.; Tan, H.; Yi, X.; Pan, L.; Zhang, W.; Fan, F.; Liu, Y.; et al. An Organic Terpyridyl-Iron Polymer Based Memristor for Synaptic Plasticity and Learning Behavior Simulation. RSC Adv. 2016, 6, 25179–25184. [Google Scholar] [CrossRef]
- Liu, G.; Wang, C.; Zhang, W.; Pan, L.; Zhang, C.; Yang, X.; Fan, F.; Chen, Y.; Li, R.W. Organic Biomimicking Memristor for Information Storage and Processing Applications. Adv. Electron. Mater. 2016, 2, 1500298. [Google Scholar] [CrossRef]
- Min, S.Y.; Cho, W.J. Memristive Switching Characteristics in Biomaterial Chitosan-Based Solid Polymer Electrolyte for Artificial Synapse. Int. J. Mol. Sci. 2021, 22, 773. [Google Scholar] [CrossRef]
- Yan, X.; Li, X.; Zhou, Z.; Zhao, J.; Wang, H.; Wang, J.; Zhang, L.; Ren, D.; Zhang, X.; Chen, J.; et al. Flexible Transparent Organic Artificial Synapse Based on the Tungsten/Egg Albumen/Indium Tin Oxide/Polyethylene Terephthalate Memristor. ACS Appl. Mater. Interfaces 2019, 11, 18654–18661. [Google Scholar] [CrossRef]
- Tan, M.T.; Wang, T.; Gao, X.; Zhong, Y.N.; Zhang, J.Y.; Xu, J.L.; Li, C.; Wang, S.D. Egg-White-Based Polymer Memristors with Competing Electronic-Ionic Effect and Timescale-Dependent Current Modulation. IEEE Electron. Device Lett. 2021, 42, 228–231. [Google Scholar] [CrossRef]
- Sun, B.; Liang, D.; Li, X.; Chen, P. Nonvolatile Bio-Memristor Fabricated with Natural Bio-Materials from Spider Silk. J. Mater. Sci. Mater. Electron. 2016, 27, 3957–3962. [Google Scholar] [CrossRef]
- Hota, M.K.; Bera, M.K.; Kundu, B.; Kundu, S.C.; Maiti, C.K. A Natural Silk Fibroin Protein-Based Transparent Bio-Memristor. Adv. Funct. Mater. 2012, 22, 4493–4499. [Google Scholar] [CrossRef]
- Wang, J.; Shi, C.; Sushko, M.L.; Lan, J.; Sun, K.; Zhao, J.; Liu, X.; Yan, X. Boost of the Bio-Memristor Performance for Artificial Electronic Synapses by Surface Reconstruction. ACS Appl. Mater. Interfaces 2021, 13, 39641–39651. [Google Scholar] [CrossRef] [PubMed]
- Ge, L.; Xuan, W.; Liu, S.; Huang, S.; Wang, X.; Dong, S.; Jin, H.; Luo, J. Biomaterial Gelatin Film Based Crossbar Structure Resistive Switching Devices. IEEE Trans. Nanotechnol. 2018, 17, 78–83. [Google Scholar] [CrossRef]
- Ranjan, S. TiO2 and Biomaterials Based Memristor Devices and Its In-Memory Computing Applications; University of Waterloo: Waterloo, ON, USA, 2020. [Google Scholar]
- Sun, B.; Guo, T.; Zhou, G.; Wu, J.; Chen, Y.; Zhou, Y.N.; Wu, Y.A. A Battery-Like Self-Selecting Biomemristor from Earth-Abundant Natural Biomaterials. ACS Appl. Bio Mater. 2021, 4, 1976–1985. [Google Scholar] [CrossRef] [PubMed]
- Park, H.L.; Kim, M.H.; Lee, S.H. Control of Conductive Filament Growth in Flexible Organic Memristor by Polymer Alignment. Org. Electron. 2020, 87, 105927. [Google Scholar] [CrossRef]
- Lv, Z.; Hu, Q.; Xu, Z.X.; Wang, J.; Chen, Z.; Wang, Y.; Chen, M.; Zhou, K.; Zhou, Y.; Han, S.T. Organic Memristor Utilizing Copper Phthalocyanine Nanowires with Infrared Response and Cation Regulating Properties. Adv. Electron. Mater. 2019, 5, 1–9. [Google Scholar] [CrossRef]
- Liu, H.; Wei, M.; Chen, Y. Optimization of Non-Linear Conductance Modulation Based on Metal Oxide Memristors. Nanotechnol. Rev. 2018, 7, 443–468. [Google Scholar] [CrossRef]
- Gergel-Hackett, N.; Hamadani, B.; Dunlap, B.; Suehle, J.; Richter, C.; Hacker, C.; Gundlach, D. A Flexible Solution-Processed Memristor. IEEE Electron Device Lett. 2009, 30, 706–708. [Google Scholar] [CrossRef]
- Amer, S.; Sayyaparaju, S.; Rose, G.S.; Beckmann, K.; Cady, N.C. A Practical Hafnium-Oxide Memristor Model Suitable for Circuit Design and Simulation. In Proceedings of the 2017 IEEE International Symposium on Circuits and Systems (ISCAS), Baltimore, MD, USA, 28–31 May 2017. [Google Scholar] [CrossRef]
- Mikhaylov, A.N.; Belov, A.I.; Guseinov, D.V.; Korolev, D.S.; Antonov, I.N.; Efimovykh, D.V.; Tikhov, S.V.; Kasatkin, A.P.; Gorshkov, O.N.; Tetelbaum, D.I.; et al. Bipolar Resistive Switching and Charge Transport in Silicon Oxide Memristor. Mater. Sci. Eng. B Solid State Mater. Adv. Technol. 2015, 194, 48–54. [Google Scholar] [CrossRef]
- Strachan, J.P.; Torrezan, A.C.; Miao, F.; Pickett, M.D.; Joshua Yang, J.; Yi, W.; Medeiros-Ribeiro, G.; Stanley Williams, R. State Dynamics and Modeling of Tantalum Oxide Memristors. IEEE Trans. Electron Devices 2013, 60, 2194–2202. [Google Scholar] [CrossRef]
- Wang, S.; He, C.; Tang, J.; Yang, R.; Shi, D.; Zhang, G. Electronic Synapses Based on Ultrathin Quasi-Two-Dimensional Gallium Oxide Memristor. Chin. Phys. B 2019, 28, 017304. [Google Scholar] [CrossRef]
- Prezioso, M.; Merrikh Bayat, F.; Hoskins, B.; Likharev, K.; Strukov, D. Self-Adaptive Spike-Time-Dependent Plasticity of Metal-Oxide Memristors. Sci. Rep. 2016, 6, 2–7. [Google Scholar] [CrossRef] [Green Version]
- Gao, Q.; Huang, A.; Zhang, J.; Ji, Y.; Zhang, J.; Chen, X.; Geng, X.; Hu, Q.; Wang, M.; Xiao, Z.; et al. Artificial Synapses with a Sponge-like Double-Layer Porous Oxide Memristor. NPG Asia Mater. 2021, 13, 3. [Google Scholar] [CrossRef]
- Cao, G.; Cao, G.; Cheng, C.; Zhang, H.; Zhang, H.; Chen, R.; Huang, B.; Yan, X.; Pei, W.; Chen, H.; et al. The Application of Halide Perovskites in Memristors. J. Semicond. 2020, 41, 051205. [Google Scholar] [CrossRef]
- Xiao, X.; Hu, J.; Tang, S.; Yan, K.; Gao, B.; Chen, H.; Zou, D. Recent Advances in Halide Perovskite Memristors: Materials, Structures, Mechanisms, and Applications. Adv. Mater. Technol. 2020, 5, 1900914. [Google Scholar] [CrossRef]
- Zeng, F.; Guo, Y.; Hu, W.; Tan, Y.; Zhang, X.; Feng, J.; Tang, X. Opportunity of the Lead-Free All-Inorganic Cs 3 Cu 2 I 5 Perovskite Film for Memristor and Neuromorphic Computing Applications. ACS Appl. Mater. Interfaces 2020, 12, 23094–23101. [Google Scholar] [CrossRef]
- Fang, Y.; Zhai, S.; Chu, L.; Zhong, J. Advances in Halide Perovskite Memristor from Lead-Based to Lead-Free Materials. ACS Appl. Mater. Interfaces 2021, 13, 17141–17157. [Google Scholar] [CrossRef]
- Zhao, X.; Xu, H.; Wang, Z.; Lin, Y.; Liu, Y. Memristors with Organic-Inorganic Halide Perovskites. InfoMat 2019, 1, 183–210. [Google Scholar] [CrossRef] [Green Version]
- Kumari, K.; Majumder, S.; Thakur, A.D.; Ray, S.J. Temperature-Dependent Resistive Switching Behaviour of an Oxide Memristor. Mater. Lett. 2021, 303, 130451. [Google Scholar] [CrossRef]
- Nili, H.; Walia, S.; Balendhran, S.; Strukov, D.B.; Bhaskaran, M.; Sriram, S. Nanoscale Resistive Switching in Amorphous Perovskite Oxide (a- SrTiO3) Memristors. Adv. Funct. Mater. 2014, 24, 6741–6750. [Google Scholar] [CrossRef]
- Sangani, L.D.V.; Krishna, M.G. Oxygen Affinity of Metal Electrodes as Control Parameter in Tuning the Performance of CuxO-Based Resistive Random Access Memory Devices. Phys. Status Solidi (A) Appl. Mater. Sci. 2019, 216, 1900392. [Google Scholar] [CrossRef]
- Yun, M.J.; Lee, D.; Kim, S.; Wenger, C.; Kim, H.D. A Nonlinear Resistive Switching Behaviors of Ni/HfO2/TiN Memory Structures for Self-Rectifying Resistive Switching Memory. Mater. Charact. 2021, 182, 111578. [Google Scholar] [CrossRef]
- Yang, K.; Fu, L.; Chen, J.; Wang, F.; Tian, L.; Song, X.; Wu, Z.; Li, Y. Anatomy of Resistive Switching Behavior in Titanium Oxide Based RRAM Device. Mater. Sci. Semicond. Process. 2022, 143, 106492. [Google Scholar] [CrossRef]
- Coleman, V.A.; Bradby, J.E.; Jagadish, C.; Munroe, P.; Heo, Y.W.; Pearton, S.J.; Norton, D.P.; Inoue, M.; Yano, M. Mechanical Properties of ZnO Epitaxial Layers Grown on A- and c-Axis Sapphire. Appl. Phys. Lett. 2005, 86, 1929874. [Google Scholar] [CrossRef]
- Lin, C.; Tang, C.; Wu, S.-C.; Yang, S.; Lai, Y.; Wu, S. Resistive Switching Characteristics of Zinc Oxide (ZnO) Resistive RAM with Al Metal Electrode. In Proceedings of the 4th IEEE International NanoElectronics Conference, Tao-Yuan, Taiwan, 21–24 June 2011; pp. 1–2. [Google Scholar]
- Xue, Q.; Hang, T.; Gong, Z.; Chen, L.; Liang, J.; Sun, Y.; Lu, D.; Zhang, X.; Chen, C.C.; Li, M. Transient and Biocompatible Resistive Switching Memory Based on Electrochemically-Deposited Zinc Oxide. Adv. Electron. Mater. 2021, 7, 2100322. [Google Scholar] [CrossRef]
- Tian, R.; Li, L.; Yang, K.; Yang, Z.; Wang, H.; Pan, P.; He, J.; Zhao, J.; Zhou, B. Resistance Switching Characteristics of Ag/ZnO/Graphene Resistive Random Access Memory. Vacuum 2023, 207, 111625. [Google Scholar] [CrossRef]
- Mofor, A.C.; Bakin, A.S.; Postels, B.; Suleiman, M.; Elshaer, A.; Waag, A. Growth of ZnO Layers for Transparent and Flexible Electronics. Thin Solid Films 2008, 516, 1401–1404. [Google Scholar] [CrossRef]
- Kim, S.; Moon, H.; Gupta, D.; Yoo, S.; Choi, Y.K. Resistive Switching Characteristics of Sol-Gel Zinc Oxide Films for Flexible Memory Applications. IEEE Trans. Electron Devices 2009, 56, 696–699. [Google Scholar] [CrossRef]
- You, H.C.; Lin, G.K. Solution-Processed ZnO Thin Films for Low Voltage and Low Temperature Application in Flexible Resistive Random Access Memory. Thin Solid Films 2016, 616, 728–732. [Google Scholar] [CrossRef]
- Delfag, M.; Rachovitis, G.; González, Y.; Jehn, J.; Youssef, A.H.; Schindler, C.; Ruediger, A. Fully Printed ZnO-Based Valency-Change Memories for Flexible and Transparent Applications. Flex. Print. Electron. 2022, 7, 045001. [Google Scholar] [CrossRef]
- Xu, N.; Liu, L.; Sun, X.; Liu, X.; Han, D.; Wang, Y.; Han, R.; Kang, J.; Yu, B. Characteristics and Mechanism of Conduction/Set Process in TiN/ZnO/Pt Resistance Switching Random-Access Memories. Appl. Phys. Lett. 2008, 92, 35–38. [Google Scholar] [CrossRef]
- Lin, C.-L.; Wu, S.-C.; Tang, C.C.; Lai, Y.-H.; Yang, S.-R.; Wu, S.-C. Unipolar Resistive Switching and Retention of RTA-Treated Zinc Oxide (ZnO) Resistive RAM. In Proceedings of the 18th IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA), Incheon, Republic of Korea, 4–7 July 2011; pp. 1–5. [Google Scholar]
- Shih, C.C.; Chang, K.C.; Chang, T.C.; Tsai, T.M.; Zhang, R.; Chen, J.H.; Chen, K.H.; Young, T.F.; Chen, H.L.; Lou, J.C.; et al. Resistive Switching Modification by Ultraviolet Illumination in Transparent Electrode Resistive Random Access Memory. IEEE Electron Device Lett. 2014, 35, 633–635. [Google Scholar] [CrossRef]
- Lin, C.L.; Tang, C.C.; Wu, S.C.; Juan, P.C.; Kang, T.K. Impact of Oxygen Composition of ZnO Metal-Oxide on Unipolar Resistive Switching Characteristics of Al/ZnO/Al Resistive RAM (RRAM). Microelectron. Eng. 2015, 136, 15–21. [Google Scholar] [CrossRef]
- Ke, J.J.; Namura, K.; Retamal, J.R.D.; Ho, C.H.; Minamitake, H.; Wei, T.C.; Tsai, D.S.; Lin, C.H.; Suzuki, M.; He, J.H. Surface-Controlled Metal Oxide Resistive Memory. IEEE Electron Device Lett. 2015, 36, 1307–1309. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.Y.; Cho, C.H.; Shim, E. Le Effect of Working Pressure during ZnO Thin-Film Layer Deposition on Transparent Resistive Random Access Memory Device Characteristics. J. Nanosci. Nanotechnol. 2016, 16, 10313–10318. [Google Scholar] [CrossRef]
- Wang, X.; Qian, H.; Guan, L.; Wang, W.; Xing, B.; Yan, X.; Zhang, S.; Sha, J.; Wang, Y. Influence of Metal Electrode on the Performance of ZnO Based Resistance Switching Memories. J. Appl. Phys. 2017, 122, 154301. [Google Scholar] [CrossRef]
- Park, J.; Kim, S. Improving Endurance and Reliability by Optimizing the Alternating Voltage in Pt/ZnO/TiN RRAM. Results Phys. 2022, 39, 105731. [Google Scholar] [CrossRef]
- Simanjuntak, F.M.; Ohno, T.; Minami, K.; Samukawa, S. Transparent ZnO Resistive Switching Memory Fabricated by Neutral Oxygen Beam Treatment. Jpn. J. Appl. Phys. 2022, 61, SM1010. [Google Scholar] [CrossRef]
- Misra, P.; Das, A.K.; Kukreja, L.M. Switching Characteristics of ZnO Based Transparent Resistive Random Access Memory Devices Grown by Pulsed Laser Deposition. Phys. Status Solidi (C) Curr. Top. Solid State Phys. 2010, 7, 1718–1720. [Google Scholar] [CrossRef]
- Smirnov, V.A.; Tominov, R.V.; Avilov, V.I.; Alyabieva, N.I.; Vakulov, Z.E.; Zamburg, E.G.; Khakhulin, D.A.; Ageev, O.A. Investigation into the Memristor Effect in Nanocrystalline ZnO Films. Semiconductors 2019, 53, 72–77. [Google Scholar] [CrossRef]
- Sun, Y.; Yan, X.; Zheng, X.; Li, Y.; Liu, Y.; Shen, Y.; Ding, Y.; Zhang, Y. Effect of Carrier Screening on ZnO-Based Resistive Switching Memory Devices. Nano Res. 2017, 10, 77–86. [Google Scholar] [CrossRef]
- Deshpande, S.; Nair, V.V. Resistive Switching of Al/Sol-Gel ZnO/Al Devices for Resistive Random Access Memory Applications. In Proceedings of the ACT 2009—International Conference on Advances in Computing, Control and Telecommunication Technologies, Trivandrum, India, 28–29 December 2009; pp. 471–473. [Google Scholar] [CrossRef]
- Wu, C.C.; You, H.C.; Lin, Y.H.; Yang, C.J.; Hsiao, Y.P.; Liao, T.P.; Yang, W.L. Impact of Electrode Surface Morphology in ZnO-Based Resistive Random Accessmemory Fabricated Using the Cu Chemical Displacement Technique. Materials 2018, 11, 265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ji, L.W.; Jiang, Z.P. Nonvolatile Resistance Random Access Memory Devices Based on ZnO Nanorod Arrays. Smart Sci. 2015, 3, 7–9. [Google Scholar] [CrossRef]
- Hsu, C.C.; Ting, W.C.; Chen, Y.T. Effects of Substrate Temperature on Resistive Switching Behavior of Planar ZnO Resistive Random Access Memories. J. Alloys Compd. 2017, 691, 537–544. [Google Scholar] [CrossRef]
- Huang, Y.; Shen, Z.; Wu, Y.; Wang, X.; Zhang, S.; Shi, X.; Zeng, H. Amorphous ZnO Based Resistive Random Access Memory. RSC Adv. 2016, 6, 17867–17872. [Google Scholar] [CrossRef]
- Gupta, C.P.; Jain, P.K.; Chand, U.; Sharma, S.K.; Birla, S.; Sancheti, S. Effect of Annealing Temperature on Switching Characteristics of Zinc Oxide Based RRAM Device. In Proceedings of the 1st International Conference on Innovative Trends and Advances in Engineering and Technology, ICITAET 2019, Shegaon, India, 27–28 December 2019; pp. 112–115. [Google Scholar] [CrossRef]
- Ke, J.J.; Wei, T.C.; Tsai, D.S.; Lin, C.H.; He, J.H. Surface Effects of Electrode-Dependent Switching Behavior of Resistive Random-Access Memory. Appl. Phys. Lett. 2016, 109, 131603. [Google Scholar] [CrossRef] [Green Version]
- Raffone, F.; Cicero, G. Does Platinum Play a Role in the Resistance Switching of ZnO Nanowire-Based Devices? Solid State Ion 2017, 299, 93–95. [Google Scholar] [CrossRef]
- Chen, D.L.; Yu, H.C.; Yang, C.C.; Su, Y.K.; Chou, C.W.; Ruan, J.L. Performance Enhancement of Pt/ZnO/Pt Resistive Random Access Memory (RRAM) with UV-Ozone Treatment. In Proceedings of the AM-FPD 2016—23rd International Workshop on Active-Matrix Flatpanel Displays and Devices: TFT Technologies and FPD Materials, Kyoto, Japan, 6–8 July 2016; pp. 213–214. [Google Scholar] [CrossRef]
- He, S.; Hao, A.; Qin, N.; Bao, D. Unipolar Resistive Switching Properties of Pr-Doped ZnO Thin Films. Ceram. Int. 2017, 43, S474–S480. [Google Scholar] [CrossRef]
- Russo, P.; Xiao, M.; Liang, R.; Zhou, N.Y. UV-Induced Multilevel Current Amplification Memory Effect in Zinc Oxide Rods Resistive Switching Devices. Adv. Funct. Mater. 2018, 28, 1706230. [Google Scholar] [CrossRef]
- Saini, M.; Kumar, M.; Mandal, R.; Mitra, A.; Som, T. White Light Modulated Forming-Free Multilevel Resistive Switching in ZnO:Cu Films. Appl. Surf. Sci. 2021, 563, 150271. [Google Scholar] [CrossRef]
- Zhao, X.; Song, P.; Gai, H.; Li, Y.; Ai, C.; Wen, D. Li-Doping Effect on Characteristics of ZnO Thin Films Resistive Random Access Memory. Micromachines 2020, 11, 889. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.; Herng, T.S.; Guo, Y.; Ding, J.; Wang, N.; Zeng, K. Correlation of Resistance Switching and Polarization Rotation in Copper Doped Zinc Oxide (ZnO:Cu) Thin Films Studied by Scanning Probe Microscopy. J. Mater. 2019, 5, 574–582. [Google Scholar] [CrossRef]
- Reddy Boppidi, P.K.; Joshna, P.; Som, D.H.R.; Biswas, P.; Bhattacharyya, D.; Kanungo, S.; Banerjee, S.; Kundu, S. Understanding the Efficacy of Cu in Creating Oxygen Vacancies and Temperature Dependent Electrical Transport in Solution Processed Cu:ZnO Thin Films. Mater. Sci. Semicond. Process. 2020, 120, 105311. [Google Scholar] [CrossRef]
- Xiao, J.; Herng, T.S.; Ding, J.; Zeng, K. Resistive Switching Behavior in Copper Doped Zinc Oxide (ZnO:Cu) Thin Films Studied by Using Scanning Probe Microscopy Techniques. J. Alloys Compd. 2017, 709, 535–541. [Google Scholar] [CrossRef]
- Li, S.S.; Su, Y.K. Improvement of the Performance in Cr-Doped ZnO Memory Devices: Via Control of Oxygen Defects. RSC Adv. 2019, 9, 2941–2947. [Google Scholar] [CrossRef] [Green Version]
- Boppidi, P.K.R.; Raj, P.M.P.; Challagulla, S.; Gollu, S.R.; Roy, S.; Banerjee, S.; Kundu, S. Unveiling the Dual Role of Chemically Synthesized Copper Doped Zinc Oxide for Resistive Switching Applications. J. Appl. Phys. 2018, 124, 214901. [Google Scholar] [CrossRef]
- Chen, G.; Peng, J.J.; Song, C.; Zeng, F.; Pan, F. Interplay between Chemical State, Electric Properties, and Ferromagnetism in Fe-Doped ZnO Films. J. Appl. Phys. 2013, 113, 104503. [Google Scholar] [CrossRef]
- Li, S.S.; Su, Y.K. Conductive Filaments Controlled Ferromagnetism in Co-Doped ZnO Resistive Switching Memory Device. Jpn. J. Appl. Phys. 2019, 58, SBBI01. [Google Scholar] [CrossRef]
- Si, X.; Liu, Y.; Wu, X.; Lei, W.; Xu, J.; Du, W.; Zhou, T.; Lin, J. The Interaction between Oxygen Vacancies and Doping Atoms in ZnO. Mater. Des. 2015, 87, 969–973. [Google Scholar] [CrossRef]
- Li, H.; Chen, Q.; Chen, X.; Mao, Q.; Xi, J.; Ji, Z. Improvement of Resistive Switching in ZnO Film by Ti Doping. Thin Solid Film. 2013, 537, 279–284. [Google Scholar] [CrossRef]
- Tao, H.L.; Zhang, Z.H.; Pan, L.L.; He, M.; Song, B.; Li, Q. Effects of Oxygen Vacancy on Magnetic Properties of Cobalt-Doped Zno Dilute Magnetic Semiconductors. Int. J. Mod. Phys. B 2013, 27, 1350078. [Google Scholar] [CrossRef]
- Xu, H.; Wu, C.; Xiahou, Z.; Jung, R.; Li, Y.; Liu, C. Improved Resistance Switching Stability in Fe-Doped ZnO Thin Films Through Pulsed Magnetic Field Annealing. Nanoscale Res. Lett. 2017, 12, 176. [Google Scholar] [CrossRef] [Green Version]
- Younis, A.; Chu, D.; Li, S. Bi-Stable Resistive Switching Characteristics in Ti-Doped ZnO Thin Films. Nanoscale Res. Lett. 2013, 8, 154. [Google Scholar] [CrossRef] [Green Version]
- Mullani, N.B.; Patil, V.B.; Tikke, R.S.; Pawar, P.S.; Mohite, S.V.; Bagade, A.A.; Dongale, T.D. Effect of Ag Doping on Hydro-thermally Grown ZnO Thin-Film Electronic Synapse Device. Bioinspired Biomim. Nanobiomater. 2018, 7, 82–89. [Google Scholar] [CrossRef]
- Park, Y.; Lee, J.S. Bifunctional Silver-Doped ZnO for Reliable and Stable Organic-Inorganic Hybrid Perovskite Memory. ACS Appl. Mater. Interfaces 2021, 13, 1021–1026. [Google Scholar] [CrossRef]
- Zhang, L.; Huang, H.; Ye, C.; Chang, K.-C.; Zhang, R.; Xia, Q.; Wei, X.; Wei, W.; Wang, W. Exploration of Highly Enhanced Performance and Resistive Switching Mechanism in Hafnium Doping ZnO Memristive Device. Semicond. Sci. Technol. 2018, 33, 085013. [Google Scholar] [CrossRef]
- Kao, M.C.; Chen, H.Z.; Chen, K.H.; Shi, J.B.; Weng, J.H.; Chen, K.P. Resistive Switching Behavior and Optical Properties of Transparent Pr-Doped ZnO Based Resistive Random Access Memory. Thin Solid Films 2020, 697, 137816. [Google Scholar] [CrossRef]
- Zhuge, F.; Peng, S.; He, C.; Zhu, X.; Chen, X.; Liu, Y.; Li, R.W. Improvement of Resistive Switching in Cu/ZnO/Pt Sandwiches by Weakening the Randomicity of the Formation/Rupture of Cu Filaments. Nanotechnology 2011, 22, 275204. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.C.; Chen, S.W.; Wu, J.M. Resistive Switching Behavior of (Zn1-XMgx)O Films Prepared by Sol-Gel Processes. Thin Solid Films 2011, 519, 6155–6159. [Google Scholar] [CrossRef]
- Kinoshita, K.; Okutani, T.; Tanaka, H.; Hinoki, T.; Agura, H.; Yazawa, K.; Ohmi, K.; Kishida, S. Flexible and Transparent ReRAM with GZO Memory Layer and GZO-Electrodes on Large PEN Sheet. Solid State Electron. 2011, 58, 48–53. [Google Scholar] [CrossRef]
- Cao, X.; Li, X.; Gao, X.; Liu, X.; Yang, C.; Yang, R.; Jin, P. All-ZnO-Based Transparent Resistance Random Access Memory Device Fully Fabricated at Room Temperature. J. Phys. D Appl. Phys. 2011, 44, 255104. [Google Scholar] [CrossRef]
- Kinoshtia, K.; Hinoki, T.; Yazawa, K.; Ohmi, K.; Kishida, S. Mechanism of Resistive Memory Effect in Ga Doped ZnO Thin Films. Phys. Status Solidi (C) Curr. Top. Solid State Phys. 2010, 7, 1712–1714. [Google Scholar] [CrossRef]
- Lin, C.C.; Tang, J.F.; Su, H.H.; Hong, C.S.; Huang, C.Y.; Chu, S.Y. Multi-Step Resistive Switching Behavior of Li-Doped ZnO Resistance Random Access Memory Device Controlled by Compliance Current. J. Appl. Phys. 2016, 119, 244506. [Google Scholar] [CrossRef]
- Igityan, A.; Kafadaryan, Y.; Aghamalyan, N.; Petrosyan, S.; Badalyan, G.; Vardanyan, V.; Nersisyan, M.; Hovsepyan, R.; Palagushkin, A.; Kryzhanovsky, B. Resistivity Switching Properties of Li-Doped ZnO Films Deposited on LaB6 Electrode. Thin Solid Films 2015, 595, 92–95. [Google Scholar] [CrossRef]
- Zhao, X.; Li, Y.; Ai, C.; Wen, D. Resistive Switching Characteristics of Li-Doped ZnO Thin Films Based on Magnetron Sputtering. Materials 2019, 12, 1282. [Google Scholar] [CrossRef] [Green Version]
- Peng, H.Y.; Li, G.P.; Ye, J.Y.; Wei, Z.P.; Zhang, Z.; Wang, D.D.; Xing, G.Z.; Wu, T. Electrode Dependence of Resistive Switching in Mn-Doped ZnO: Filamentary versus Interfacial Mechanisms. Appl. Phys. Lett. 2010, 96, 192113. [Google Scholar] [CrossRef]
- Yang, Y.C.; Pan, F.; Liu, Q.; Liu, M.; Zeng, F. Fully Room-Temperature-Fabricated Nonvolatile Resistive Memory for Ultrafast and High-Density Memory Application. Nano Lett. 2009, 9, 1636–1643. [Google Scholar] [CrossRef]
- Li, S.S.; Su, Y.K. Oxygen-Vacancy Induced Resistive Switching Effect in Mn-Doped ZnO Memory Devices. Phys. Status Solidi Rapid Res. Lett. 2019, 13, 1800453. [Google Scholar] [CrossRef]
- Yang, H.; Li, Z.; Tang, L.; Li, G.; Sun, Q.; Ren, S. Improved Magnetism in Mn-Doped ZnO Thin Films by Inserting ZnO Layer. IOP Conf. Ser. Mater. Sci. Eng. 2019, 562, 012075. [Google Scholar] [CrossRef]
- Chen, G.; Song, C.; Chen, C.; Gao, S.; Zeng, F.; Pan, F. Resistive Switching and Magnetic Modulation in Cobalt-Doped ZnO. Adv. Mater. 2012, 24, 3515–3520. [Google Scholar] [CrossRef]
- Chu, D.; Younis, A.; Li, S. Enhancement of Resistance Switching in Electrodeposited Co-ZnO Films. ISRN Nanotechnol. 2012, 2012, 1705803. [Google Scholar] [CrossRef] [Green Version]
- Lee, W.H.; Kim, E.J.; Yoon, S.M. Multilevel Resistive-Change Memory Operation of al-Doped ZnO Thin-Film Transistor. IEEE Electron Device Lett. 2016, 37, 1014–1017. [Google Scholar] [CrossRef]
- Fan, Y.S.; Liu, P.T.; Teng, L.F.; Hsu, C.H. Bipolar Resistive Switching Characteristics of Al-Doped Zinc Tin Oxide for Nonvolatile Memory Applications. Appl. Phys. Lett. 2012, 101, 2012–2015. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Jiang, Y.; Tang, X.-G.; Liu, Q.; Tang, Z.; Li, W.; Guo, X.-B.; Zhou, Y.-C. Enhancement of Resistive Switching Performance in Hafnium Oxide (HfO2) Devices via Sol-Gel Method Stacking Tri-Layer HfO2/Al-ZnO/HfO2 Structures. Nanomaterials 2022, 13, 39. [Google Scholar] [CrossRef]
- Li, X.; Yu, H.; Fang, R.; Zhu, W.; Wang, L.; Zhang, L. Improved Resistive Switching Characteristics in the P+-Si/ZnO:Al/Ni Heterojunction Device. Appl. Phys. A Mater. Sci. Process. 2023, 129, 1–7. [Google Scholar] [CrossRef]
- Shirolkar, M.M.; Hao, C.; Yin, S.; Li, M.; Wang, H. Influence of Surface Null Potential on Nonvolatile Bistable Resistive Switching Memory Behavior of Dilutely Aluminum Doped ZnO Thin Film. Appl. Phys. Lett. 2013, 102, 243501. [Google Scholar] [CrossRef]
- Simanjuntak, F.M.; Panda, D.; Tsai, T.L.; Lin, C.A.; Wei, K.H.; Tseng, T.Y. Enhancing the Memory Window of AZO/ZnO/ITO Transparent Resistive Switching Devices by Modulating the Oxygen Vacancy Concentration of the Top Electrode. J. Mater. Sci. 2015, 50, 6961–6969. [Google Scholar] [CrossRef]
- Lee, W.-H.; Kim, E.-J.; Yoon, S.-M. Effect of Al Incorporation Amount upon the Resistive-Switching Characteristics for Nonvolatile Memory Devices Using Al-Doped ZnO Semiconductors. J. Vac. Sci. Technol. B Nanotechnol. Microelectron. Mater. Process. Meas. Phenom. 2015, 33, 051216. [Google Scholar] [CrossRef]
- Wu, P.Y.; Huang, H.C.; Ma, X.H.; Hao, Y.; Tsai, T.M.; Sze, S.M.; Zheng, H.X.; Shih, C.C.; Chang, T.C.; Chen, W.J.; et al. Improvement of Resistive Switching Characteristics in Zinc Oxide-Based Resistive Random Access Memory by Ammoniation Annealing. IEEE Electron Device Lett. 2020, 41, 357–360. [Google Scholar] [CrossRef]
- Yang, F.; Wei, M.; Deng, H. Bipolar Resistive Switching Characteristics in CuO/ZnO Bilayer Structure. J. Appl. Phys. 2013, 114, 134502. [Google Scholar] [CrossRef]
- Huang, C.Y.; Ho, Y.T.; Hung, C.J.; Tseng, T.Y. Compact Ga-Doped ZnO Nanorod Thin Film for Making High-Performance Transparent Resistive Switching Memory. IEEE Trans. Electron Devices 2014, 61, 3435–3441. [Google Scholar] [CrossRef]
- Huang, X.; Chang, K.C.; Chang, T.C.; Tsai, T.M.; Shih, C.C.; Zhang, R.; Huang, S.Y.; Chen, K.H.; Chen, J.H.; Wang, H.J.; et al. Controllable Set Voltage in Bilayer ZnO:SiO2/ZnOx Resistance Random Access Memory by Oxygen Concentration Gradient Manipulation. IEEE Electron Device Lett. 2014, 35, 1227–1229. [Google Scholar] [CrossRef]
- Wenxiang, S.; Kailiang, Z.; Fang, W.; Kuo, S.; Yinping, M.; Jinshi, Z. Resistive Switching Characteristics of Zinc Oxide Resistive RAM Doped with Nickel. ECS Trans 2013, 52, 1009–1014. [Google Scholar] [CrossRef]
- Kumar, D.; Chand, U.; Siang, L.W.; Tseng, T.Y. High-Performance TiN/Al2O3/ZnO/Al2O3/TiN Flexible RRAM Device with High Bending Condition. IEEE Trans. Electron Devices 2020, 67, 493–498. [Google Scholar] [CrossRef]
- Li, X.; Yang, J.G.; Ma, H.P.; Liu, Y.H.; Ji, Z.G.; Huang, W.; Ou, X.; Zhang, D.W.; Lu, H.L. Atomic Layer Deposition of Ga2O3/ZnO Composite Films for High-Performance Forming-Free Resistive Switching Memory. ACS Appl. Mater. Interfaces 2020, 12, 30538–30547. [Google Scholar] [CrossRef]
- Simanjuntak, F.M.; Chandrasekaran, S.; Pattanayak, B.; Lin, C.-C.; Tseng, T.-Y. Peroxide Induced Volatile and Non-Volatile Switching Behavior in ZnO-Based Electrochemical Metallization Memory Cell. Nanotechnology 2017, 28, 38LT02. [Google Scholar] [CrossRef]
- Simanjuntak, F.M.; Panda, D.; Chandrasekaran, S.; Aluguri, R.; Lin, C.C.; Tseng, T.Y. Evaluating Gallium-Doped ZnO Top Electrode Thickness for Achieving a Good Switch-Ability in ZnO2/ZnO Bilayer Transparent Valence Change Memory. J. Electroceram 2021, 46, 14–19. [Google Scholar] [CrossRef]
- Wu, S.J.; Wang, F.; Zhang, Z.C.; Li, Y.; Han, Y.M.; Yang, Z.C.; Zhao, J.S.; Zhang, K.L. High Uniformity and Forming-Free ZnO-Based Transparent RRAM with HfOx Inserting Layer. Chin. Phys. B 2018, 27, 087701. [Google Scholar] [CrossRef]
- Yan, X.; Wang, X.; Wang, D.; Li, M.; Guan, L.; Yao, J.; Niu, X.; Xing, B.; Yu, Y.; Tan, M.; et al. Design of a Two-Layer Structure to Significantly Improve the Performance of Zinc Oxide Resistive Memory. Nanotechnology 2020, 31, 115209. [Google Scholar] [CrossRef] [PubMed]
- Shen, S.H.; Wang, X.F.; Tian, Y.; Li, M.R.; Yang, Y.; Ren, T.L. Laser-Reconfigured MoS2/ZnO van Der Waals Synapse. Nanoscale 2019, 11, 11114–11120. [Google Scholar] [CrossRef] [PubMed]
- Kadhim, M.S.; Yang, F.; Sun, B.; Hou, W.; Peng, H.; Hou, Y.; Jia, Y.; Yuan, L.; Yu, Y.; Zhao, Y. Existence of Resistive Switching Memory and Negative Differential Resistance State in Self-Colored MoS2/ZnO Heterojunction Devices. ACS Appl Electron Mater 2019, 1, 318–324. [Google Scholar] [CrossRef]
- Jagannadham, K. Effect of MoS2 Film on Memristor Characteristics of ZnO Film. J. Appl. Phys. 2019, 126, 244501. [Google Scholar] [CrossRef]
- Zhou, Z.; Xiu, F.; Jiang, T.; Xu, J.; Chen, J.; Liu, J.; Huang, W. Solution-Processable Zinc Oxide Nanorods and a Reduced Graphene Oxide Hybrid Nanostructure for Highly Flexible and Stable Memristor. J. Mater. Chem. C Mater. 2019, 7, 10764–10768. [Google Scholar] [CrossRef]
- Khanal, G.M.; Acciarito, S.; Cardarilli, G.C.; Chakraborty, A.; Di Nunzio, L.; Fazzolari, R.; Cristini, A.; Re, M.; Susi, G. Synaptic Behaviour in ZnO-RGO Composites Thin Film Memristor. Electron. Lett. 2017, 53, 296–298. [Google Scholar] [CrossRef]
- Cardarilli, G.C.; Khanal, G.M.; Nunzio, L.D.; Re, M.; Fazzolari, R.; Kumar, R. Memristive and Memory Impedance Behavior in a Photo-Annealed ZnO–RGO Thin-Film Device. Electronics 2020, 9, 287. [Google Scholar] [CrossRef] [Green Version]
- Khanal, G.M.; Cardarilli, G.; Chakraborty, A.; Acciarito, S.; Mulla, M.Y.; Di Nunzio, L.; Fazzolari, R.; Re, M. A ZnO-RGO Composite Thin Film Discrete Memristor. In Proceedings of the 2016 IEEE International Conference on Semiconductor Electronics (ICSE), Kuala Lumpur, Malaysia, 17–19 August 2016; pp. 129–132. [Google Scholar] [CrossRef]
- Aziz, T.N.T.A.; Rosli, A.B.; Yusoff, M.M.; Herman, S.H.; Zulkifli, Z. Transparent Hybrid ZnO-Graphene Film for High Stability Switching Behavior of Memristor Device. Mater. Sci. Semicond. Process. 2019, 89, 68–76. [Google Scholar] [CrossRef]
- Izam, N.I.B.; Tengku Abd Aziz, T.N.; Abdul Rahman, R.; Malek, M.F.; Herman, S.H.; Zulkifli, Z. The Effect of Dip-Coating Speed on Graphene Decorated ZnO Films for Memristor Application. In Proceedings of the 14th IEEE Student Conference on Research and Development: Advancing Technology for Humanity, SCOReD 2016, Kuala Lumpur, Malaysia, 13–14 December 2016. [Google Scholar] [CrossRef]
- Singh, P.; Simanjuntak, F.M.; Kumar, A.; Tseng, T.Y. Resistive Switching Behavior of Ga Doped ZnO-Nanorods Film Conductive Bridge Random Access Memory. Thin Solid Films 2018, 660, 828–833. [Google Scholar] [CrossRef]
- Panda, D.; Simanjuntak, F.M.; Chandrasekaran, S.; Pattanayak, B.; Singh, P.; Tseng, T.Y. Barrier Layer Induced Switching Stability in Ga:ZnO Nanorods Based Electrochemical Metallization Memory. IEEE Trans. Nanotechnol. 2020, 19, 764–768. [Google Scholar] [CrossRef]
- Chen, J.Y.; Wu, M.C.; Ting, Y.H.; Lee, W.C.; Yeh, P.H.; Wu, W.W. Applications of P-n Homojunction ZnO Nanowires to One-Diode One-Memristor RRAM Arrays. Scr. Mater. 2020, 187, 439–444. [Google Scholar] [CrossRef]
- Qi, J.; Olmedo, M.; Ren, J.; Zhan, N.; Zhao, J.; Zheng, J.-G.; Liu, J. Resistive Switching in Single Epitaxial ZnO Nanoislands. ACS Nano 2012, 6, 1051–1058. [Google Scholar] [CrossRef] [PubMed]
- Chang, W.Y.; Lin, C.A.; He, J.H.; Wu, T.B. Resistive Switching Behaviors of ZnO Nanorod Layers. Appl. Phys. Lett. 2010, 96, 242109. [Google Scholar] [CrossRef]
- Tseng, Z.-L.; Kao, P.-C.; Shih, M.-F.; Huang, H.-H.; Wang, J.-Y.; Chu, S.-Y. Electrical Bistability in Hybrid ZnO Nanorod/Polymethylmethacrylate Heterostructures. Appl. Phys. Lett. 2010, 97, 212103. [Google Scholar] [CrossRef]
Device (Thickness) | ZnO Layer Deposition Method | Additional Information | Ref. | VRESET [V] | VSET [V] | HRS/LRS Ratio |
---|---|---|---|---|---|---|
Al/ZnO (30 nm)/Al | sol-gel | [79] | 3.0 | 0.8 | >104 | |
Al/ZnO (37 nm)/Al | Si substrate | [80] | 0.6–0.8 | 1.5–1.8 | >102 | |
flexible substrate | 0.3–0.6 | 1.5–1.8 | >104 | |||
Al/ZnO (20 nm)/Cu | changing Cu electrode roughness | [95] | ND | ND | 7.7 × 104–3.1 × 106 | |
Al/ZnO/Al | [94] | ~0.6 | ~1.7 | >102 | ||
GZO/ZnO (90 nm)/GZO | PLD | [91] | 1.5–1.8 | 2.0–2.4 | 5–10 | |
Ti/ZnO/Pt | [92] | −2.5 | 4 | ~41 | ||
ITO/ZnO/Ag | CBD | nanorod layer | [96] | −2.78 | 3.25 | 18.7 |
Ag/ZnO (100 nm)/W | electrochemical deposition | [76] | −2.8 | 3.1 | 103 | |
Au/ZnO/AZO | plasma-enhanced atomic layer deposition | [93] | ND | ND | 105 | |
EDOT:PSS/ZnO/PEDOT:PSS | jet-printing | [81] | −3.5 | 0.7 | 5 | |
Pt/ZnO (20 nm)/TiN | sputtering | [89] | −0.7 | 0.7 | >102 | |
TiN/ZnO (30 nm)/Pt | [82] | −4.0 | 4.0 | ~10 | ||
Al/ZnO (60nm)/Al | no rapid thermal annealing | [103] | 0.6 | 2.2 | 108 | |
TiN/ZnO (30 nm)/Pt | rapid thermal annealing | [82] | 0.3 | 2.6 | 109 | |
Al/ZnO (71.4 nm)/Al Al/ZnO (70 nm)/Al | [75,85] | 2.5 | 0.5 | 109 | ||
oxygen-gas flow ratio 16% | 2.85 | 0.3 | ~105 | |||
Al/ZnO (71.4 nm)/Al | oxygen-gas flow ratio 25% | [75] | 2.45 | 0.35 | ~109 | |
Al/ZnO (70 nm)/Al Pt/Cr/SiO2/Si/ZnO (100 nm)/Pt | oxygen-gas flow ratio 33% | [85,86] | 2.30 | 0.25 | ~108 | |
rough interface | 1.5 | 1.65 | ~717 | |||
flat interface | 2.0 | 2.6 | ~4600 | |||
Ag/ZnO (100 nm)/P Ag/ZnO (90 nm)/Pt | amorphous ZnO | [88,98] | −0.2 | 0.24 | >107 | |
−0.6 | 0.5 | 102 | ||||
Ti/ZnO (90 nm)/Pt | [98] | −0.9 | 1.1 | 10 | ||
Ag/ZnO (70 nm)/Graphene | [77,90] | −3.11 | 3.81 | 30 | ||
Cu/ZnO (23 nm)/ITO | no O treatment | no switching behavior | no switching behavior | no switching behavior | ||
Ag/ZnO (70 nm)/Graphene | O treatment | [77] | ND | ND | ~10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nowak, E.; Chłopocka, E.; Szybowicz, M. ZnO and ZnO-Based Materials as Active Layer in Resistive Random-Access Memory (RRAM). Crystals 2023, 13, 416. https://doi.org/10.3390/cryst13030416
Nowak E, Chłopocka E, Szybowicz M. ZnO and ZnO-Based Materials as Active Layer in Resistive Random-Access Memory (RRAM). Crystals. 2023; 13(3):416. https://doi.org/10.3390/cryst13030416
Chicago/Turabian StyleNowak, Ewelina, Edyta Chłopocka, and Mirosław Szybowicz. 2023. "ZnO and ZnO-Based Materials as Active Layer in Resistive Random-Access Memory (RRAM)" Crystals 13, no. 3: 416. https://doi.org/10.3390/cryst13030416
APA StyleNowak, E., Chłopocka, E., & Szybowicz, M. (2023). ZnO and ZnO-Based Materials as Active Layer in Resistive Random-Access Memory (RRAM). Crystals, 13(3), 416. https://doi.org/10.3390/cryst13030416