The Vertically Heteroepitaxial Structure for Lead-Free Piezoelectric K0.5Na0.5NbO3 Films
Abstract
:1. Introduction
2. Experiment
2.1. Preparation of the Ceramic Target
2.2. Deposition of the Films
2.3. Characterization
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lee, M.K.; Nath, T.K.; Eom, C.B.; Smoak, M.C.; Tsui, F. Strain modification of epitaxial perovskite oxide thin films using structural transitions of ferroelectric BaTiO3 substrate. Appl. Phys. Lett. 2000, 77, 3547–3549. [Google Scholar] [CrossRef] [Green Version]
- MacManus-Driscoll, J.L.; Zerrer, P.; Wang, H.; Yang, H.; Yoon, J.; Fouchet, A.; Yu, R.; Blamire, M.G.; Jia, Q. Strain control and spontaneous phase ordering in vertical nanocomposite heteroepitaxial thin films. Nat. Mater. 2008, 7, 314–320. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Chen, A.; Khatkhatay, F.; Tsai, C.F.; Su, Q.; Jiao, L.; Zhang, X.; Wang, H. Integration of self-assembled vertically aligned nanocomposite (La0.7Sr0.3MnO3)(1−x):(ZnO)x thin films on silicon substrates. ACS Appl. Mater. Interf. 2013, 5, 3995–3999. [Google Scholar] [CrossRef]
- Sangle, A.L.; Lee, O.J.; Kursumovic, A.; Zhang, W.; Chen, A.; Wang, H.; MacManus-Driscoll, J.L. Very high commutation quality factor and dielectric tunability in nanocomposite SrTiO3 thin films with TC enhanced to >300 °C. Nanoscale 2018, 10, 3460–3468. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Wang, H.; Yoon, J.; Wang, Y.; Jain, M.; Feldmann, D.M.; Dowden, P.C.; MacManus-Driscoll, J.L.; Jia, Q. Vertical interface effect on the physical properties of self-sssembled nanocomposite epitaxial films. Adv. Mater. 2009, 21, 3794–3798. [Google Scholar] [CrossRef]
- Chen, A.; Bi, Z.; Jia, Q.; MacManus-Driscoll, J.L.; Wang, H. Microstructure, vertical strain control and tunable functionalities in self-assembled, vertically aligned nanocomposite thin films. Acta Mater. 2013, 61, 2783–2792. [Google Scholar] [CrossRef]
- Mokhtari, F.; Foroughi, J.; Zheng, T.; Cheng, Z.; Spinks, G.M. Triaxial braided piezo fiber energy harvesters for self-powered wearable technologies. J. Mater. Chem. A 2019, 7, 8245–8257. [Google Scholar] [CrossRef]
- Mokhtari, F.; Spinks, G.M.; Fay, C.; Cheng, Z.; Raad, R.; Xi, J.; Foroughi, J. Wearable electronic textiles from nanostructured piezoelectric fibers. Adv. Mater. Technol. 2020, 5, 1900900. [Google Scholar] [CrossRef]
- Fan, P.; Liu, K.; Ma, W.; Tan, H.; Zhang, Q.; Zhang, L.; Zhou, C.; Salamon, D.; Zhang, S.-T.; Zhang, Y.; et al. Progress and perspective of high strain NBT-based lead-free piezoceramics and multilayer actuators. J. Mater. 2021, 7, 508–544. [Google Scholar] [CrossRef]
- Qiu, C.; Wang, B.; Zhang, N.; Zhang, S.; Liu, J.; Walker, D.; Wang, Y.; Tian, H.; Shrout, T.R.; Xu, Z.; et al. Transparent ferroelectric crystals with ultrahigh piezoelectricity. Nature 2020, 577, 350–354. [Google Scholar] [CrossRef] [PubMed]
- Martin, L.W.; Rappe, A.M. Thin-film ferroelectric materials and their application. Nat. Rev. Mater. 2016, 2, 16087. [Google Scholar] [CrossRef] [Green Version]
- Li, P.; Zhai, J.; Shen, B.; Zhang, S.; Li, X.; Zhu, F.; Zhang, X. Ultrahigh piezoelectric properties in textured (K,Na)NbO3-based lead-free ceramics. Adv. Mater. 2018, 30, 1705171. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Xiao, D.; Zhu, J. Potassium-sodium niobate lead-free piezoelectric present, and further of phase boundary. Chem. Rev. 2015, 115, 2559–2595. [Google Scholar] [CrossRef] [PubMed]
- Rubio-Marcos, F.; López-Juárez, R.; Rojas-Hernandez, R.E.; Campo, A.D.; Razo-Pérez, N.; Fernandez, J.F. Lead-free piezoceramics: Revealing the role of the rhombohdedral-tetragonal phase coexistence in enhancement of piezoelectric properties. ACS Appl. Mater. Interfaces 2015, 7, 23080–23088. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Kakimoto, K.-I.; Ohsato, H. Structure and electrical properties of lead-free (Na0.5K0.5)NbO3-BaTiO3 ceramics. Jpn. J. Appl. Phys. 2004, 43, 6662–6666. [Google Scholar] [CrossRef]
- Wang, L.; Ren, W.; Shi, P.; Wu, X. Structures, electrical properties, and leakage current behaviors of un-doped and Mn-doped lead-free ferroelectric K0.5Na0.5NbO3 films. J. Appl. Phys. 2014, 115, 034103. [Google Scholar] [CrossRef]
- Xu, K.; Li, J.; Lv, X.; Wu, J.; Zhang, X.; Xiao, D.; Zhu, J. Superior piezoelectric properties in potassium-sodium niobate lead-free ceramics. Adv. Mater. 2016, 28, 8519–8523. [Google Scholar] [CrossRef]
- Wang, X.; Wu, J.; Xiao, D.; Zhu, J.; Cheng, X.; Zheng, T.; Zhang, B.; Lou, X.; Wang, X. Giant piezoelectricity in potassium-sodium niobate lead-free ceramics. J. Am. Chem. Soc. 2014, 136, 2905–2910. [Google Scholar] [CrossRef]
- Chen, W.; Wang, L.; Ren, W.; Niu, G.; Zhao, J.; Zhang, N.; Liu, M.; Tian, Y.; Dong, M. Crystalline phase and electrical properties of lead-free piezoelectric KNN-based films with different orientations. J. Am. Ceram. Soc. 2017, 100, 2965–2971. [Google Scholar] [CrossRef]
- Takahashi, H.; Numamoto, Y.; Tani, J.; Tsurekawa, S. Piezoelectric properties of BaTiO3 ceramics with high performance farbricated by microwave sintering. Jpn. J. Appl. Phys. Part 1 2006, 45, 7405–7408. [Google Scholar] [CrossRef]
- Park, K.-I.; Xu, S.; Liu, Y.; Hwang, G.-T.; Kang, S.-J.L.; Wang, Z.L.; Lee, K.J. Piezoelectric BaTiO3 thin film nanogenerator on plastic substrate. Nano. Lett. 2010, 10, 4939–4943. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Zhao, J.Y.; Niu, G.; Ren, W.; Zhang, N.; Zheng, K.; Quan, Y.; Wang, L.Y.; Zhuang, J.; Cai, H.H.; et al. Giant strain response and relaxor characteristic in lead-free (Bi0.5Na0.5)TiO3-BaZrO3 ferreoelectric thin films. J. Mater. Chem. C 2022, 10, 7449–7459. [Google Scholar] [CrossRef]
- Zhao, J.Y.; Zhang, N.; Ren, W.; Niu, G.; Walker, D.; Thomas, P.A.; Wang, L.Y.; Ye, Z.-G. Polar domain structural evolution under electric field and temperature in the (Bi0.5Na0.5)TiO3-0.06BaTiO3 piezoelectrics. J. Am. Ceram. Soc. 2019, 102, 437–447. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.M.; Yao, K.; Qin, X.; Sharifzadeh, M.; Liu, X.G.; Tay, F.E.H. High piezoelectric performance and phase transition in stressed lead-free (1-x)(K, Na)(Sb, Nb)O3-x(Bi, Na, K)ZrO3 thin film. Adv. Electron. Mater. 2017, 1700033. [Google Scholar] [CrossRef]
- vonHelden, L.; Bogula, L.; Janolin, P.-E.; Hanke, M.; Breuer, T.; Schmidbauer, M.; Ganschow, S.; Schwarzkopf, J. Huge impact of compressive strain on phase transition temperatures in epitaxial ferroelectric KxNa1-xNbO3 thin films. Appl. Phys. Lett. 2019, 114, 232905. [Google Scholar] [CrossRef] [Green Version]
- Locquet, J.-P.; Perret, J.; Fompeyrine, J.; Mächler, E.; Seo, J.W.; Tendeloo, G.V. Doubling the critical temperature of La1.9Sr0.1CuO4 using epitaxial strain. Nature 1998, 394, 453–456. [Google Scholar] [CrossRef]
- Logvenov, G.; Gozar, A.; Bozovic, I. High-temperature superconductivity in a single copper-oxygen plane. Science 2009, 326, 699–702. [Google Scholar] [CrossRef]
- Béa, H.; Dupé, B.; Fusil, S.; Mattana, R.; Jacquet, E.; Warot-Fonrose, B.; Wilhelm, F.; Rogalev, A.; Petit, S.; Cros, V.; et al. Evidence for room-temperature multiferroicity in a compound with a giant axial ratio. Phys. Rev. Lett. 2009, 102, 217603. [Google Scholar] [CrossRef] [PubMed]
- Vailionis, A.; Boschker, H.; Siemons, W.; Houwman, E.P.; Blank, D.H.A.; Rijnders, G.; Koster, G. Misfit strain accomodation in epitaxial ABO3 perovskites: Lattice rotations and lattice modulations. Phys. Rev. B 2011, 83, 064101. [Google Scholar] [CrossRef] [Green Version]
- Pertsev, N.A.; Kukhar, V.G.; Kohlstedt, H.; Waser, R. Phase diagrams and physical properties of single-domain epitaxial Pb(Zr1-xTix)O3 thin film. Phys. Rev. B 2003, 67, 054107. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, M.D.; Dekkers, M.; Houwman, E.; Steenwelle, R.; Wan, X.; Roelofs, A.; Schmitz-Kempen, T.; Rijnders, G. Misfit strain dependence of ferroelectric and piezoelectric properties of clamped (001) epitaxial Pb(Zr0.52, Ti0.48)O3 thin film. Appl. Phys. Lett. 2011, 99, 252904. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.X.; Chen, J.; Fan, L.L.; Diéguez, O.; Cao, J.L.; Pan, Z.; Wang, Y.L.; Wang, J.G.; Kim, M.; Deng, S.Q.; et al. Giant polarization in super-tetragonal thin films through interphase strain. Science 2018, 361, 494–497. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.Q.; Chen, F.; Jin, F.; Lan, D.; Qu, L.L.; Zhang, K.X.; Zhang, Z.X.; Gao, G.Y.; Huang, H.L.; Li, T.; et al. Tuning electrical properties and phase transitions through strain engineering in lead-free ferroelectric K0.5Na0.5NbO3-LiTaO3-CaZrO3 thin film. Appl. Phys. Lett. 2019, 115, 202901. [Google Scholar] [CrossRef]
- Harrington, S.A.; Zhai, J.; Denev, S.; Gopalan, V.; Wang, H.; Bi, Z.; Redfern, S.A.; Baek, S.H.; Bark, C.W.; Eom, C.B.; et al. Thick lead-free ferroelectric films with high Curie temperatures through nanocomposite-induced strain. Nat. Nanotechnol. 2011, 6, 491–495. [Google Scholar] [CrossRef]
- Misra, S.; Li, L.; Zhang, D.; Jian, J.; Qi, Z.; Fan, M.; Chen, H.T.; Zhang, X.; Wang, H. Self-assembled ordered three-phase Au-BaTiO3-ZnO vertically aligned nano-composites achieved by a templating method. Adv. Mater. 2019, 31, 1806529. [Google Scholar] [CrossRef] [PubMed]
- Zeng, F.; Liu, Q.; Cai, E.; Wang, Y.; Xue, A.; Peng, S.; Zhou, S.; Zhu, Y. Relaxor phenomenon of (1−x)(Ba.85Ca.15)(Zr.09Ti.91)O3-xTa+ 0.6 wt%Li2CO3 ceramics with high piezoelectric constant and Curie temperature. Ceram. Int. 2018, 44, 10677–10684. [Google Scholar] [CrossRef]
- Wang, L.; Ren, W.; Ma, W.; Liu, M.; Shi, P.; Wu, X. Improved electrical properties for Mn-doped lead-free piezoelectric potassium sodium niobate ceramics. AIP Adv. 2015, 5, 097120. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Wang, L.; Ren, W.; Li, C.; Quan, Y.; Zheng, K.; Zhuang, J. The Vertically Heteroepitaxial Structure for Lead-Free Piezoelectric K0.5Na0.5NbO3 Films. Crystals 2023, 13, 525. https://doi.org/10.3390/cryst13030525
Wang Z, Wang L, Ren W, Li C, Quan Y, Zheng K, Zhuang J. The Vertically Heteroepitaxial Structure for Lead-Free Piezoelectric K0.5Na0.5NbO3 Films. Crystals. 2023; 13(3):525. https://doi.org/10.3390/cryst13030525
Chicago/Turabian StyleWang, Zhe, Lingyan Wang, Wei Ren, Chao Li, Yi Quan, Kun Zheng, and Jian Zhuang. 2023. "The Vertically Heteroepitaxial Structure for Lead-Free Piezoelectric K0.5Na0.5NbO3 Films" Crystals 13, no. 3: 525. https://doi.org/10.3390/cryst13030525
APA StyleWang, Z., Wang, L., Ren, W., Li, C., Quan, Y., Zheng, K., & Zhuang, J. (2023). The Vertically Heteroepitaxial Structure for Lead-Free Piezoelectric K0.5Na0.5NbO3 Films. Crystals, 13(3), 525. https://doi.org/10.3390/cryst13030525