High-Angle Structural Color Scattering Features from Polymeric Photonic Structures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Thin Film Fabrication and Ordering Chracterization
2.2. Reflectance Characterization
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yablonovitch, E. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 1987, 58, 2059. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- John, S. Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 1987, 58, 2486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yablonovitch, E.; Gmitter, T. Photonic band structure: The face-centered-cubic case. Phys. Rev. Lett. 1989, 63, 1950. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leung, K.-M.; Liu, Y. Full vector wave calculation of photonic band structures in face-centered-cubic dielectric media. Phys. Rev. Lett. 1990, 65, 2646. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parker, A.R. 515 million years of structural colour. J. Opt. Pure Appl. Opt. 2000, 2, R15. [Google Scholar] [CrossRef]
- Sanders, J.V. Colour of precious opal. Nature 1964, 204, 1151–1153. [Google Scholar] [CrossRef]
- Kinoshita, S.; Yoshioka, S.; Fujii, Y.; Okamoto, N. Photophysics of structural color in the Morpho butterflies. Forma 2002, 17, 103–121. [Google Scholar]
- Vukusic, P.; Sambles, J.; Lawrence, C.; Wootton, R. Quantified interference and diffraction in single Morpho butterfly scales. Proc. R. Soc. Lond. Ser. B Biol. Sci. 1999, 266, 1403–1411. [Google Scholar] [CrossRef] [Green Version]
- Kolle, M.; Lee, S. Progress and Opportunities in Soft Photonics and Biologically Inspired Optics. Adv. Mater. 2018, 30, 1702669. [Google Scholar] [CrossRef]
- Lyu, Q.; Li, M.; Zhang, L.; Zhu, J. Bioinspired Supramolecular Photonic Composites: Construction and Emerging Applications. Macromol. Rapid Commun. 2022, 43, 2100867. [Google Scholar] [CrossRef]
- Zeng, S.; Liu, Y.; Li, S.; Shen, K.; Hou, Z.; Chooi, A.P.; Smith, A.T.; Chen, Z.; Sun, L. Smart Laser-Writable Micropatterns with Multiscale Photo/Moisture Reconstructible Structure. Adv. Funct. Mater. 2021, 31, 2009481. [Google Scholar] [CrossRef]
- Qiao, Y.; Meng, Z.; Wang, P.; Yan, D. Research Progress of Bionic Adaptive Camouflage Materials. Front. Mater. 2021, 8, 79. [Google Scholar] [CrossRef]
- Dong, X.; Wu, P.; Schaefer, C.G.; Zhang, L.; Finlayson, C.E.; Wang, C. Solvatochromism based on structural color: Smart polymer composites for sensing and security. Mater. Des. 2018, 160, 417–426. [Google Scholar] [CrossRef]
- Shen, X.; Wu, P.; Schäfer, C.G.; Guo, J.; Wang, C. Ultrafast assembly of nanoparticles to form smart polymeric photonic crystal films: A new platform for quick detection of solution compositions. Nanoscale 2019, 11, 1253–1261. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Wu, P.; Zhao, G.; Guo, J.; Wang, C. Fabrication of industrial-level polymer photonic crystal films at ambient temperature Based on uniform core/shell colloidal particles. J. Colloid Interface Sci. 2021, 584, 145–153. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Finlayson, C.E.; Snoswell, D.R.; Haines, A.; Schäfer, C.; Spahn, P.; Hellmann, G.P.; Petukhov, A.V.; Herrmann, L.; Burdet, P. Large-scale ordering of nanoparticles using viscoelastic shear processing. Nat. Commun. 2016, 7, 11661. [Google Scholar] [CrossRef] [Green Version]
- Finlayson, C.E.; Spahn, P.; Snoswell, D.R.; Yates, G.; Kontogeorgos, A.; Haines, A.I.; Hellmann, G.P.; Baumberg, J.J. 3D Bulk Ordering in Macroscopic Solid Opaline Films by Edge-Induced Rotational Shearing. Adv. Mater. 2011, 23, 1540–1544. [Google Scholar] [CrossRef] [Green Version]
- Pursiainen, O.L.J.; Baumberg, J.J.; Winkler, H.; Viel, B.; Spahn, P.; Ruhl, T. Shear-Induced Organization in Flexible Polymer Opals. Adv. Mater. 2008, 20, 1484–1487. [Google Scholar] [CrossRef]
- Pursiainen, O.L.; Baumberg, J.J.; Winkler, H.; Viel, B.; Spahn, P.; Ruhl, T. Nanoparticle-tuned structural color from polymer opals. Opt. Express 2007, 15, 9553–9561. [Google Scholar] [CrossRef] [Green Version]
- Rosetta, G.; An, T.; Zhao, Q.; Baumberg, J.J.; Tomes, J.J.; Gunn, M.D.; Finlayson, C.E. Chromaticity of structural color in polymer thin film photonic crystals. Opt. Express 2020, 28, 36219–36228. [Google Scholar] [CrossRef]
- Rosetta, G.; Butters, M.; Tomes, J.J.; Little, J.; Gunn, M.D.; Finlayson, C.E. Quantifying the saturation of structural color from thin film polymeric photonic crystals. In Proceedings of the Photonic and Phononic Properties of Engineered Nanostructures X, San Francisco, CA, USA, 1–6 February 2020; p. 112890B. [Google Scholar]
- Schäfer, C.G.; Gallei, M.; Zahn, J.T.; Engelhardt, J.; Hellmann, G.t.P.; Rehahn, M. Reversible light-, thermo-, and mechano-responsive elastomeric polymer opal films. Chem. Mater. 2013, 25, 2309–2318. [Google Scholar]
- Schlander, A.M.B.; Gallei, M. Temperature-Induced Coloration and Interface Shell Cross-Linking for the Preparation of Polymer-Based Opal Films. ACS Appl. Mater. Interfaces 2019, 11, 44764–44773. [Google Scholar] [CrossRef] [PubMed]
- Schäfer, C.G.; Smolin, D.A.; Hellmann, G.P.; Gallei, M. Fully reversible shape transition of soft spheres in elastomeric polymer opal films. Langmuir 2013, 29, 11275–11283. [Google Scholar]
- Kontogeorgos, A.; Snoswell, D.R.E.; Finlayson, C.E.; Baumberg, J.J.; Spahn, P.; Hellmann, G.P. Inducing Symmetry Breaking in Nanostructures: Anisotropic Stretch-Tuning Photonic Crystals. Phys. Rev. Lett. 2010, 105, 233909. [Google Scholar] [CrossRef] [Green Version]
- Ji, C.; Lee, K.-T.; Guo, L.J. High-color-purity, angle-invariant, and bidirectional structural colors based on higher-order resonances. Opt. Lett. 2019, 44, 86–89. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.T.; Ji, C.; Banerjee, D.; Guo, L.J. Angular-and polarization-independent structural colors based on 1D photonic crystals. Laser Photonics Rev. 2015, 9, 354–362. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Zhao, Y.; Hu, S.; Lv, J.; Ying, Y.; Gervinskas, G.; Si, G. Artificial Structural Color Pixels: A Review. Materials 2017, 10, 944. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cho, E.-H.; Kim, H.-S.; Cheong, B.-H.; Oleg, P.; Xianyua, W.; Sohn, J.-S.; Ma, D.-J.; Choi, H.-Y.; Park, N.-C.; Park, Y.-P. Two-dimensional photonic crystal color filter development. Opt. Express 2009, 17, 8621–8629. [Google Scholar] [CrossRef]
- Wu, S.; Liu, T.; Tang, B.; Li, L.; Zhang, S. Structural Color Circulation in a Bilayer Photonic Crystal by Increasing the Incident Angle. ACS Appl. Mater. Interfaces 2019, 11, 10171–10177. [Google Scholar] [CrossRef]
- Winkler, H.; Ruhl, T. Moulded Bodies Consisting of Core-Shell Particles. U.S. Patent 20050142343A1, 2005. [Google Scholar]
- Ossi, P. Disordered Materials: An Introduction; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Rosetta, G.; Gunn, M.; Tomes, J.J.; Butters, M.; Pieschel, J.; Hartmann, F.; Gallei, M.; Finlayson, C.E. Transparent Polymer Opal Thin Films with Intense UV Structural Color. Molecules 2022, 27, 3774. [Google Scholar] [CrossRef]
- Shen, Z.; Shi, L.; You, B.; Wu, L.; Zhao, D. Large-scale fabrication of three-dimensional ordered polymer films with strong structure colors and robust mechanical properties. J. Mater. Chem. 2012, 22, 8069–8075. [Google Scholar] [CrossRef]
- Finlayson, C.E.; Baumberg, J.J. Polymer opals as novel photonic materials. Polym. Int. 2013, 62, 1403–1407. [Google Scholar] [CrossRef] [Green Version]
- Finlayson, C.E.; Baumberg, J.J. Generating bulk-scale ordered optical materials using shear-assembly in viscoelastic media. Materials 2017, 10, 688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rosetta, G.; Tomes, J.J.; Butters, M.; Gunn, M.; Finlayson, C.E. High-Angle Structural Color Scattering Features from Polymeric Photonic Structures. Crystals 2023, 13, 622. https://doi.org/10.3390/cryst13040622
Rosetta G, Tomes JJ, Butters M, Gunn M, Finlayson CE. High-Angle Structural Color Scattering Features from Polymeric Photonic Structures. Crystals. 2023; 13(4):622. https://doi.org/10.3390/cryst13040622
Chicago/Turabian StyleRosetta, Giselle, John J. Tomes, Mike Butters, Matthew Gunn, and Chris E. Finlayson. 2023. "High-Angle Structural Color Scattering Features from Polymeric Photonic Structures" Crystals 13, no. 4: 622. https://doi.org/10.3390/cryst13040622
APA StyleRosetta, G., Tomes, J. J., Butters, M., Gunn, M., & Finlayson, C. E. (2023). High-Angle Structural Color Scattering Features from Polymeric Photonic Structures. Crystals, 13(4), 622. https://doi.org/10.3390/cryst13040622