N-Polar Indium Nitride Quantum Dashes and Quantum Wire-like Structures: MOCVD Growth and Characterization
Abstract
:1. Introduction
2. Methods
3. Results and Discussion
4. Summary
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wu, Y.R.; Huang, C.Y.; Zhao, Y.; Speck, J.S. Nonpolar and semipolar LEDs. In Nitride Semiconductor Light-Emitting Diodes (LEDs): Materials, Technologies and Applications; Woodhead Publishing: Sawston, UK, 2013; pp. 250–275. [Google Scholar]
- Hwang, D.; Mughal, A.; Pynn, C.D.; Nakamura, S.; DenBaars, S.P. Sustained high external quantum efficiency in ultrasmall blue III-nitride micro-LEDs. Appl. Phys. Express 2017, 10, 032101. [Google Scholar] [CrossRef]
- Ponce, F.A.; Bour, D.P. Nitride-based semiconductors for blue and green light-emitting devices. Nature 1997, 386, 351–359. [Google Scholar] [CrossRef]
- Leonard, J.T.; Young, E.C.; Yonkee, B.P.; Cohen, D.A.; Margalith, T.; DenBaars, S.P.; Speck, J.S.; Nakamura, S. Demonstration of a III-nitride vertical-cavity surface-emitting laser with a III-nitride tunnel junction intracavity contact. Appl. Phys. Lett. 2015, 107, 091105. [Google Scholar] [CrossRef]
- Bhuiyan, A.G.; Hashimoto, A.; Yamamoto, A. Indium nitride (InN): A review on growth, characterization, and properties. J. Appl. Phys. 2003, 94, 2779–2808. [Google Scholar] [CrossRef]
- Polyakov, V.M.; Schwierz, F. Low-field electron mobility in wurtzite InN. Appl. Phys. Lett. 2006, 88, 032101. [Google Scholar] [CrossRef]
- Lu, H.; Schaff, W.J.; Eastman, L.F.; Stutz, C.E. Surface charge accumulation of InN films grown by molecular-beam epitaxy. Appl. Phys. Lett. 2003, 82, 1736–1738. [Google Scholar] [CrossRef]
- Tekcan, B.; Alkis, S.; Alevli, M.; Dietz, N.; Ortac, B.; Biyikli, N.; Okyay, A.K. A Near-Infrared Range Photodetector Based on Indium Nitride Nanocrystals Obtained Through Laser Ablation. IEEE Electron. Device Lett. 2014, 35, 936–938. [Google Scholar] [CrossRef]
- Lu, H.; Schaff, W.J.; Eastman, L.F. Surface chemical modification of InN for sensor applications. J. Appl. Phys. 2004, 96, 3577–3579. [Google Scholar] [CrossRef]
- Meissner, C.; Ploch, S.; Pristovsek, M.; Kneissl, M. Volmer-Weber growth mode of InN quantum dots on GaN by MOVPE. Phys. Status Solidi Curr. Top Solid State Phys. 2009, 6, S545–S548. [Google Scholar] [CrossRef]
- Lozano, J.G.; González, D.; Sánchez, A.M.; Araújo, D.; Ruffenach, S.; Briot, O.; García, R. Structural characterization of InN quantum dots grown by Metalorganic Vapour Phase Epitaxy. Phys. Status Solidi Curr. Top Solid State Phys. 2006, 3, 1687–1690. [Google Scholar] [CrossRef]
- Lozano, J.G.; Sánchez, A.M.; García, R.; Gonzalez, D.; Briot, O.; Ruffenach, S. Misfit relaxation of InN quantum dots: Effect of the GaN capping layer. Appl. Phys. Lett. 2006, 88, 151913. [Google Scholar] [CrossRef]
- Ambacher, O.; Brandt, M.S.; Dimitrov, R.; Metzger, T.; Stutzmann, M.; Fischer, R.A.; Miehr, A.; Bergmaier, A.; Dollinger, G. Thermal stability and desorption of group III nitrides prepared by metal organic chemical vapor deposition. J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 1996, 14, 3532–3542. [Google Scholar] [CrossRef]
- Benzarti, Z.; Sekrafi, T.; Khalfallah, A.; Bougrioua, Z.; Vignaud, D.; Evaristo, M.; Cavaleiro, A. Growth temperature effect on physical and mechanical properties of nitrogen rich InN epilayers. J. Alloys Compd. 2021, 885, 160951. [Google Scholar] [CrossRef]
- Liu, S.S.; Stevenson, D.A. Growth Kinetics and Catalytic Effects in the Vapor Phase Epitaxy of Gallium Nitride Growth Kinetics and Catalytic Effects in the Vapor Phase Epitaxy of Gallium Nitride. J. Electrochem. Soc. 1978, 125, 1161–1169. [Google Scholar] [CrossRef]
- Ogura, M. Growth and device applications of GaAs and InGaAs quantum wires on patterned substrates. J. Korean Phys. Soc. 2008, 53, 1442–1448. [Google Scholar] [CrossRef]
- Saito, H.; Nishi, K.; Ogura, I.; Sugou, S.; Sugimoto, Y. Room-Temperature Lasing Operation of a quantum-dot vertical-cavity surface-emitting laser. Appl. Phys. Lett. 1996, 69, 3140–3142. [Google Scholar] [CrossRef]
- Verma, J.; Kandaswamy, P.K.; Protasenko, V.; Verma, A.; Xing, H.G.; Jena, D. Tunnel-injection GaN quantum dot ultraviolet light-emitting diodes. Appl. Phys. Lett. 2013, 102, 041103. [Google Scholar] [CrossRef]
- Grandjean, N.; Ilegems, M. Visible InGaN/GaN Quantum-Dot Materials and Devices. Proc. IEEE 2007, 95, 1853–1865. [Google Scholar] [CrossRef]
- Fiore, A.; Oesterle, U.; Stanley, R.P.; Ilegems, M. High-efficiency light-emitting diodes at ≈1.3 μm using InAs-InGaAs quantum dots. IEEE Photonics Technol. Lett. 2000, 12, 1601–1603. [Google Scholar] [CrossRef]
- Widmann, F.; Daudin, B.; Feuillet, G.; Samson, Y.; Rouvière, J.L.; Pelekanos, N. Growth kinetics and optical properties of self-organized GaN quantum dots. J. Appl. Phys. 1998, 83, 7618–7624. [Google Scholar] [CrossRef]
- Coleman, J.J.; Young, J.D.; Garg, A. Semiconductor quantum dot lasers: A tutorial. J. Light Technol. 2011, 29, 499–510. [Google Scholar] [CrossRef]
- Ruffenach, S.; Maleyre, B.; Briot, O.; Gil, B. Growth of InN quantum dots by MOVPE. Phys. Status Solidi C Conf. 2005, 2, 826–832. [Google Scholar] [CrossRef]
- Reilly, C.E.; Lund, C.; Nakamura, S.; Mishra, U.K.; Denbaars, S.P.; Keller, S. Infrared luminescence from N-polar InN quantum dots and thin films grown by metal organic chemical vapor deposition. Appl. Phys. Lett. 2019, 114, 241103. [Google Scholar] [CrossRef]
- Ke, W.C.; Fu, C.P.; Chen, C.Y.; Lee, L.; Ku, C.S.; Chou, W.C.; Chang, W.-H.; Lee, M.C.; Chen, W.K.; Lin, W.J.; et al. Photoluminescence properties of self-assembled InN dots embedded in GaN grown by metal organic vapor phase epitaxy. Appl. Phys. Lett. 2006, 88, 10–13. [Google Scholar] [CrossRef]
- Werner, F.; Limbach, F.; Carsten, M.; Denker, C.; Malindretos, J.; Rizzi, A. Electrical conductivity of InN nanowires and the influence of the native indium oxide formed at their surface. Nano Lett. 2009, 9, 1567–1571. [Google Scholar] [CrossRef]
- Chang, Y.L.; Li, F.; Fatehi, A.; Mi, Z. Molecular beam epitaxial growth and characterization of non-tapered InN nanowires on Si(111). Nanotechnology 2009, 20, 345203. [Google Scholar] [CrossRef]
- Chao, C.K.; Chyi, J.-I.; Hsiao, C.N.; Kei, C.C.; Kuo, S.Y.; Chang, H.-S.; Hsu, T.M. Catalyst-free growth of indium nitride nanorods by chemical-beam epitaxy. Appl. Phys. Lett. 2006, 88, 2004–2007. [Google Scholar] [CrossRef]
- Stoica, T.; Meijers, R.; Calarco, R.; Richter, T.; Lüth, H. MBE growth optimization of InN nanowires. J. Cryst. Growth 2006, 290, 241–247. [Google Scholar] [CrossRef]
- Tang, T.; Han, S.; Jin, W.; Liu, X.; Li, C.; Zhang, D.; Zhou, C.; Chen, B.; Han, J.; Meyyapan, M. Synthesis and characterization of single-crystal indium nitride nanowires. J. Mater. Res. 2004, 19, 423–426. [Google Scholar] [CrossRef]
- Zhao, S.; Fathololoumi, S.; Bevan, K.H.; Liu, D.P.; Kibria, M.G.; Li, Q.; Wang, G.T.; Guo, H.; Mi, Z. Tuning the Surface Charge Properties of Epitaxial InN Nanowires. Nano Lett. 2012, 12, 2877–2882. [Google Scholar] [CrossRef]
- Cheng, G.; Stern, E.; Turner-Evans, D.; Reed, M.A. Electronic properties of InN nanowires. Appl. Phys. Express 2005, 87, 253103. [Google Scholar] [CrossRef]
- Zhao, S.; Salehzadeh, O.; Alagha, S.; Kavanagh, K.L.; Watkins, S.P.; Mi, Z. Probing the electrical transport properties of intrinsic InN nanowires. Appl. Phys. Lett. 2013, 102, 073102. [Google Scholar] [CrossRef]
- Parry, H.J.; Ashwin, M.J.; Neave, J.H.; Jones, T.S. Growth of InAs/InP (001) nanostructures: The transition from quantum wires to quantum dots. J. Cryst. Growth 2005, 278, 131–135. [Google Scholar] [CrossRef]
- Takasuka, Y.; Yonei, K.; Yamauchi, H.; Ogura, M. InGaAs/AlGaAs Quantum Wire DFB Buried HeteroStructure Laser Diode by One-Time Selective MOCVD on Ridge Substrate. Jpn. J. Appl. Phys. 2005, 44, 2546. [Google Scholar] [CrossRef]
- Nakashima, H.; Takeuchi, M.; Inoue, K.; Takeuchi, T.; Inoue, Y.; Fischer, P.; Christen, J.; Grundmann, M.; Bimberg, D. Size-dependent luminescence of GaAs quantum wires on vicinal GaAs (110) surfaces with giant steps formed by MBE. Phys. B 1996, 227, 291–294. [Google Scholar] [CrossRef]
- Notzel, R.; Ledentsov, N.N.; Daweritz, L.; Ploog, K.; Hohenstein, M. Semiconductor quantum-wire structures directly grown on high-index surfaces. Phys. Rev. B 1992, 45, 3507–3515. [Google Scholar] [CrossRef]
- Keller, S.; Pfaff, N.; DenBaars, S.P.; Mishra, U.K. Polarization spectroscopy of N-polar AlGaN/GaN multi quantum wells grown on vicinal (000-1) GaN. Appl. Phys. Lett. 2012, 101, 182103. [Google Scholar] [CrossRef]
- Renard, J.; Amstatt, B.; Bougerol, C.; Bellet-Amalric, E.; Daudin, B.; Gayral, B. Optical properties of m -plane GaN quantum dots and quantum wires. J. Appl. Phys. 2008, 104, 1–5. [Google Scholar] [CrossRef]
- Nath, D.N.; Park, P.S.; Esposto, M.; Brown, D.; Keller, S.; Mishra, U.K.; Rajan, S. Polarization engineered 1-dimensional electron gas arrays. J. Appl. Phys. 2012, 111, 043715. [Google Scholar] [CrossRef]
- Nath, D.N.; Keller, S.; Hsieh, E.; Denbaars, S.P.; Mishra, U.K.; Rajan, S. Lateral confinement of electrons in vicinal N-polar AlGaN/GaN heterostructure. Appl. Phys. Lett. 2010, 97, 162106. [Google Scholar] [CrossRef]
- Keller, S.; Li, H.; Laurent, M.; Hu, Y.; Pfaff, N.; Lu, J.; Brown, D.F.; Fichtenbaum, N.A.; Speck, J.S.; DenBaars, S.P. Recent progress in metal-organic chemical vapor deposition of (0001¯) N-polar group-III nitrides. Semicond. Sci. Technol. 2014, 29, 113001. [Google Scholar] [CrossRef]
- Keller, S.; Fichtenbaum, N.A.; Wu, F.; Brown, D.B.; Rosales, A.M.; DenBaars, S.P.; Speck, J.S.; Mishra, U.K. Influence of the substrate misorientation on the properties of N-polar GaN films grown by metal organic chemical vapor deposition. J. Appl. Phys. 2007, 102, 083546. [Google Scholar] [CrossRef]
- Reilly, C.E.; Nakamura, S.; DenBaars, S.P.; Keller, S. MOCVD Growth and Characterization of InN Quantum Dots. Phys. Status Solidi Basic Res. 2019, 257, 1900508. [Google Scholar] [CrossRef]
- Lund, C.; Catalano, M.; Wang, L.; Wurm, C.; Mates, T.; Kim, M.; Nakamura, S.; Denbaars, S.; Mishra, U.K.; Keller, S. Metal-organic chemical vapor deposition of N-polar InN quantum dots and thin films on vicinal GaN. J. Appl. Phys. 2018, 123, 055702. [Google Scholar] [CrossRef]
- Romanczyk, B.; Wienecke, S.; Guidry, M.; Li, H.; Ahmadi, E.; Zheng, X.; Keller, S.; Mishra, U.K. Demonstration of Constant 8 W / mm Power Density at 10, 30, and 94 GHz in State-of-the-Art Millimeter-Wave N-polar GaN MISHEMTs. IEEE Trans. Electron Devices 2018, 65, 45–50. [Google Scholar] [CrossRef]
- Rajan, S.; Chini, A.; Wong, M.H.; Speck, J.S.; Mishra, U.K. N-polar GaNAlGaNGaN high electron mobility transistors. J. Appl. Phys. 2007, 102, 044501. [Google Scholar] [CrossRef]
- Briot, O.; Maleyre, B.; Ruffenach, S. Indium nitride quantum dots grown by metalorganic vapor phase epitaxy. Appl. Phys. Lett. 2003, 83, 2919–2921. [Google Scholar] [CrossRef]
- Lebedev, V.; Cimalla, V.; Baumann, T.; Ambacher, O.; Morales, F.M.; Lozano, J.G.; Gonzalez, D. Effect of dislocations on electrical and electron transport properties of InN thin films. II. Density and mobility of the carriers. J. Appl. Phys. 2006, 100, 094903. [Google Scholar] [CrossRef]
- Liu, W.; Tan, R.J.N.; Soh, C.B.; Chua, S.J. The effects of cap layers on electrical properties of indium nitride films. Appl. Phys. Lett. 2010, 97, 042110. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muthuraj, V.R.; Liu, W.; Collins, H.; Li, W.; Hamwey, R.; DenBaars, S.P.; Mishra, U.K.; Keller, S. N-Polar Indium Nitride Quantum Dashes and Quantum Wire-like Structures: MOCVD Growth and Characterization. Crystals 2023, 13, 699. https://doi.org/10.3390/cryst13040699
Muthuraj VR, Liu W, Collins H, Li W, Hamwey R, DenBaars SP, Mishra UK, Keller S. N-Polar Indium Nitride Quantum Dashes and Quantum Wire-like Structures: MOCVD Growth and Characterization. Crystals. 2023; 13(4):699. https://doi.org/10.3390/cryst13040699
Chicago/Turabian StyleMuthuraj, Vineeta R., Wenjian Liu, Henry Collins, Weiyi Li, Robert Hamwey, Steven P. DenBaars, Umesh K. Mishra, and Stacia Keller. 2023. "N-Polar Indium Nitride Quantum Dashes and Quantum Wire-like Structures: MOCVD Growth and Characterization" Crystals 13, no. 4: 699. https://doi.org/10.3390/cryst13040699
APA StyleMuthuraj, V. R., Liu, W., Collins, H., Li, W., Hamwey, R., DenBaars, S. P., Mishra, U. K., & Keller, S. (2023). N-Polar Indium Nitride Quantum Dashes and Quantum Wire-like Structures: MOCVD Growth and Characterization. Crystals, 13(4), 699. https://doi.org/10.3390/cryst13040699