Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,460)

Search Parameters:
Keywords = nitrides

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 3256 KB  
Article
Characteristics of GaN-Based Micro-Light-Emitting Diodes for Mbps Medium-Long Distance Underwater Visible Light Communication
by Zhou Wang, Yijing Lin, Yuhang Dai, Jiakui Fan, Weihong Sun, Junyuan Chen, Siqi Yang, Shiting Dou, Haoxiang Zhu, Yan Gu, Jin Wang, Hao Zhang, Qiang Chen and Xiaoyan Liu
Nanomaterials 2025, 15(17), 1347; https://doi.org/10.3390/nano15171347 (registering DOI) - 2 Sep 2025
Abstract
To promote the development of long-distance high-speed underwater optical wireless communication (UWOC) based on visible light, this study proposes a high-bandwidth UWOC system based on micro-light-emitting-diodes (micro-LEDs) adopting the Non-Return-to-Zero On-Off Keying (NRZ-OOK) modulation. The numerical simulations reveal that optimizing the structural parameters [...] Read more.
To promote the development of long-distance high-speed underwater optical wireless communication (UWOC) based on visible light, this study proposes a high-bandwidth UWOC system based on micro-light-emitting-diodes (micro-LEDs) adopting the Non-Return-to-Zero On-Off Keying (NRZ-OOK) modulation. The numerical simulations reveal that optimizing the structural parameters of gallium nitride (GaN)-based micro-LED through dimensional scaling and quantum well layer reduction may significantly enhance optoelectronic performance, including modulation bandwidth and luminous efficiency. Moreover, experimental validation demonstrated maximum real-time data rates of 420 Mbps, 290 Mbps, and 250 Mbps at underwater distances of 2.3 m, 6.9 m, and 11.5 m, respectively. Furthermore, the underwater audio communication was successfully implemented at an 11.5 m UWOC distance at an ultra-low level of incoming optical power (12.5 µW) at the photodetector (PD) site. The channel characterization yielded a micro-LED-specific attenuation coefficient of 0.56 dB/m, while parametric analysis revealed wavelength-dependent degradation patterns, exhibiting positive correlations between both attenuation coefficient and bit error rate (BER) with operational wavelength. This study provides valuable insights for optimizing underwater optical systems to enhance real-time environmental monitoring capabilities and strengthen security protocols for subaquatic military communications in the future. Full article
Show Figures

Figure 1

17 pages, 3153 KB  
Review
Fabrication and Properties of Hard Coatings by a Hybrid PVD Method
by Rui Zhang, Qimin Wang, Yuxiang Xu, Lisheng Li and Kwang Ho Kim
Lubricants 2025, 13(9), 390; https://doi.org/10.3390/lubricants13090390 (registering DOI) - 1 Sep 2025
Abstract
By integrating cathodic arc evaporation (CAE) with magnetron sputtering (MS) or high-power impulse magnetron sputtering (HiPIMS), hard coatings with diverse multicomponent compositions can be fabricated. Depending on the deposition conditions, the coatings with nano-composite or nano-multilayered microstructures are produced. During the mixing deposition [...] Read more.
By integrating cathodic arc evaporation (CAE) with magnetron sputtering (MS) or high-power impulse magnetron sputtering (HiPIMS), hard coatings with diverse multicomponent compositions can be fabricated. Depending on the deposition conditions, the coatings with nano-composite or nano-multilayered microstructures are produced. During the mixing deposition conditions, nano-composite coatings are fabricated, which can be tailored to possess combining properties of super hardness, low friction coefficient, and excellent thermal/chemical stability. For the deposition with larger rotating periods, layer-by-layer deposition was observed. By the nano-multilayered coating design, superior mechanical properties (hardness ≥ 35 GPa), modulated residual stresses, and enhanced high-temperature properties can be obtained. In addition, lubricious elements, low friction (friction coefficient < 0.4), and low wear (<10−5 mm3/N∙m) both at ambient temperature and high temperature can be realized. Among these coatings, some have been specifically designed to achieve outstanding cutting performance in high-speed cutting applications. Several nitride and oxide hard coatings, such as AlTiN, TiAlN/TiSiN, AlCrN/Cu, and AlCrO, were deposited using a hybrid industrial physical vapor deposition (PVD) coating system. The microstructure, mechanical properties, and cutting performance of these coatings will be discussed. Full article
(This article belongs to the Special Issue Wear and Friction of High-Performance Coatings and Hardened Surfaces)
Show Figures

Figure 1

18 pages, 6433 KB  
Article
Enhanced Fire Retardancy of Epoxy Resins upon Addition of Boron Nitride Nanoparticles Using Boron Polyol Complex
by Lalson D. Mathews, Srikanth Mateti, Jyotishkumar Parameswaranpillai, Nishar Hameed and Nisa V. Salim
Materials 2025, 18(17), 4101; https://doi.org/10.3390/ma18174101 (registering DOI) - 1 Sep 2025
Abstract
Fire retardancy and thermal management improvements in epoxy resins can critically impact their use in electronics for IoT and 5G devices. This study proposes a facile method to improve the fire retardancy and thermal properties of epoxy resins (EPs) by incorporating boron nitride [...] Read more.
Fire retardancy and thermal management improvements in epoxy resins can critically impact their use in electronics for IoT and 5G devices. This study proposes a facile method to improve the fire retardancy and thermal properties of epoxy resins (EPs) by incorporating boron nitride nanoparticles (BNNPs) with boron polyol complex (BPC) to form an ionanofluid and explores the synergistic effect of polyelectrolytes with BN. The modified multifunctional additive BPC–BNNPs were then used for the functional modification of epoxy resin. Our detailed tests and analyses on these materials confirm that by adding 0.2 wt% of BNNPs in the EP–BPC–BN complex achieved a V-0 rating in the UL-94 vertical burning test. The resultant composite demonstrated that the modification of BN with the polyol complex imparted a low smoke and char formation in the modified epoxy composites. The current study shows that EP–BPC–BN complex has great potential as a thermal interface material for the thermal management of electronics or similar applications. The presented EP–BPC–BN composite can also be utilised as a fire-retardant coating, adhesive, and binding agent in the aerospace, transportation, and building industries. Full article
(This article belongs to the Special Issue Novel Materials for Additive Manufacturing)
Show Figures

Figure 1

8 pages, 2204 KB  
Article
Process and Mechanism of Surface Brazing of Graphene on Aluminum Nitride
by Wenbo Li, Zijia Wang, Xinyun Wu, Deren Kong, Chundong Xu, Yugang Yin and Jing Lv
Coatings 2025, 15(9), 1011; https://doi.org/10.3390/coatings15091011 - 1 Sep 2025
Abstract
In order to enhance the heat dissipation of a chip, this work investigates the enhancement of the thermal homogenization effect of a ceramic substrate with a high-thermal-conductivity graphene material to improve the interfacial heat transfer performance. AgCuTi-activated brazing material is used to connect [...] Read more.
In order to enhance the heat dissipation of a chip, this work investigates the enhancement of the thermal homogenization effect of a ceramic substrate with a high-thermal-conductivity graphene material to improve the interfacial heat transfer performance. AgCuTi-activated brazing material is used to connect the graphene film/AlN. The mechanism of the influence of brazing temperatures on the microstructure and thermal conductivity of joints is discussed. The thermal conductivity of the graphene/AlN double layer composite brazed at 890 °C for 10 min holding time was the highest at 482.3 W m−1 K−1. This study provides a new solution for the application of AlN ceramics in high-heat-flow scenarios. Full article
(This article belongs to the Section Surface Characterization, Deposition and Modification)
Show Figures

Figure 1

18 pages, 8428 KB  
Article
Effect of Temperature, Heating Rate, and Cooling Rate on Bonding and Nitriding of AlSi10Mg Powder Occurring During Supersolidus Liquid-Phase Sintering
by Alena Kreitcberg, Mohamed Khaled Trigui, Abdelberi Chandoul, Roger Pelletier and Vincent Demers
J. Manuf. Mater. Process. 2025, 9(9), 296; https://doi.org/10.3390/jmmp9090296 - 1 Sep 2025
Abstract
This study investigated the effect of supersolidus liquid-phase sintering conditions on the powder particle bonding and the AlN-phase formation of an AlSi10Mg alloy. Sintering was conducted at temperatures between 550 and 579 °C, with a holding duration of 2 h under a nitrogen [...] Read more.
This study investigated the effect of supersolidus liquid-phase sintering conditions on the powder particle bonding and the AlN-phase formation of an AlSi10Mg alloy. Sintering was conducted at temperatures between 550 and 579 °C, with a holding duration of 2 h under a nitrogen atmosphere. The sintering cycles included four heating segments, performed at rates ranging from 0.2 to 5 °C/min for a total of between 5 and 15 h, and a cooling segment performed at two different cooling rates, 0.15 and 5 °C/min, resulting in durations of 12 and 70 h, respectively. Three powder batches exhibiting different particle size distributions were tested. An X-ray diffractometer, optical microscopy, and scanning electron microscopy were used to characterize phase formation and particle bonding. The results show that higher sintering temperatures and faster heating/cooling rates led to a lower fraction of AlN. In contrast, lower sintering temperatures or slow heating promoted the development of a thicker AlN shell around powder particles, inhibiting the bonding of the AlSi10Mg powder and preventing densification via the sintering process. These findings suggest that sintering at temperatures between 570 and 575 °C, with heating and cooling rates of at least 2 °C/min, constitutes a more favorable window for the densification of AlSi10Mg under a nitrogen atmosphere. Full article
Show Figures

Graphical abstract

5 pages, 205 KB  
Data Descriptor
Data on Stark Broadening of N V Spectral Lines
by Milan S. Dimitrijević, Magdalena D. Christova and Sylvie Sahal-Bréchot
Data 2025, 10(9), 140; https://doi.org/10.3390/data10090140 - 31 Aug 2025
Abstract
A data set on Stark broadening parameters defining the Lorentzian line profile (spectral line widths and shifts) for 31 multiplets of four-times-charged nitrogen ion (N V), with lines broadened by impacts with electrons (e), protons (p), He II ions, α particles (He III), [...] Read more.
A data set on Stark broadening parameters defining the Lorentzian line profile (spectral line widths and shifts) for 31 multiplets of four-times-charged nitrogen ion (N V), with lines broadened by impacts with electrons (e), protons (p), He II ions, α particles (He III), and B III, B IV, B V, and B VI ions, is given. The above-mentioned data have been calculated within the frame of the semiclassical perturbation theory, for temperatures from 50,000 K to 1,000,000 K, and densities of perturbers from 1015 cm−3 up to 1021 cm−3. These data are, first of all, of interest for diagnostics and modeling of laser-driven plasma in experiments and investigations of proton–boron fusion, especially when the target is boron nitride (BN). Data on Stark broadening by collisions with e, p, He II ions, and α particles are useful for the investigation of stellar plasma, in particular for white dwarf atmospheres and subphotospheric layer modeling. Full article
(This article belongs to the Section Spatial Data Science and Digital Earth)
15 pages, 4427 KB  
Article
AlScN Thin Films for the Piezoelectric Transduction of Suspended Microchannel Resonators
by Yara Abdelaal, Marco Liffredo and Luis Guillermo Villanueva
Sensors 2025, 25(17), 5370; https://doi.org/10.3390/s25175370 (registering DOI) - 31 Aug 2025
Abstract
Suspended microchannel resonators (SMRs) are powerful tools for mass, density, and viscosity sensing. Among various transduction methods, full piezoelectric transduction offers key advantages, including on-chip integration, low energy dissipation, and linear response. This work explores sub-200 nm Al0.6Sc0.4N thin [...] Read more.
Suspended microchannel resonators (SMRs) are powerful tools for mass, density, and viscosity sensing. Among various transduction methods, full piezoelectric transduction offers key advantages, including on-chip integration, low energy dissipation, and linear response. This work explores sub-200 nm Al0.6Sc0.4N thin films for SMR transduction, benchmarking them against their well-established AlN predecessor. By integrating the piezoelectric stack into low-stress silicon nitride (ls-SiNx) beam resonators, we investigate the impact of bottom electrode design, photoresist removal prior to deposition, and deposition bias on film quality. Characterization includes X-ray diffraction (XRD), scanning electron microscopy (SEM), d31 piezoelectric coefficient, relative dielectric permittivity, and breakdown field measurements. Results illustrate the impacts of the studied parameters and demonstrate a fourfold increase in d31, compared to AlN, confirming the strong potential of Al0.6Sc0.4N for high-performance SMR transduction. Full article
(This article belongs to the Special Issue Feature Papers in Physical Sensors 2025)
Show Figures

Graphical abstract

15 pages, 905 KB  
Article
Inverse Design of Multi-Wavelength Achromatic Metalens Integrated On-Chip with Planar Waveguide
by Mikhail Podobrii, Elena Barulina and Aleksandr Barulin
Nanomaterials 2025, 15(17), 1337; https://doi.org/10.3390/nano15171337 - 31 Aug 2025
Abstract
Waveguide-integrated metasurfaces offer a promising platform for ultracompact on-chip optical systems, enabling applications such as fluorescence sensing, holography, and near-eye displays. In particular, integrated achromatic metalenses that couple guided modes to free-space radiation are highly desirable for single-molecule fluorescence sensing, where high numerical [...] Read more.
Waveguide-integrated metasurfaces offer a promising platform for ultracompact on-chip optical systems, enabling applications such as fluorescence sensing, holography, and near-eye displays. In particular, integrated achromatic metalenses that couple guided modes to free-space radiation are highly desirable for single-molecule fluorescence sensing, where high numerical aperture (NA), efficient light focusing, and consistent focal volume overlap across excitation and emission wavelengths are critical. However, designing integrated high-NA metalenses with multi-wavelength operation remains fundamentally challenging due to the wavelength-dependent propagation of guided modes. Here, we present an inverse design framework that simultaneously optimizes the geometries and positions of silicon nitride nanofins atop a slab waveguide to achieve diffraction-limited focusing at three wavelengths with unity NA. The resulting metalens outperforms conventional segmented designs in focusing efficiency and sidelobe suppression, particularly at wavelengths corresponding to the excitation and emission bands of the model fluorophore Alexa Fluor 647. Numerical analysis shows that the design yields a high molecule detection efficiency suitable for epi-fluorescence single-molecule sensing. This work highlights the potential of inverse-designed metalenses as a versatile on-chip platform for advanced applications in fluorescence spectroscopy, augmented reality, or optical trapping. Full article
20 pages, 2666 KB  
Review
Recent Progress of Ion Implantation Technique in GaN-Based Electronic Devices
by Hao Lu, Xiaorun Hao, Yichi Zhang, Ling Yang, Bin Hou, Meng Zhang, Mei Wu, Xiaohua Ma and Yue Hao
Micromachines 2025, 16(9), 999; https://doi.org/10.3390/mi16090999 (registering DOI) - 29 Aug 2025
Viewed by 120
Abstract
Gallium nitride (GaN) offers exceptional material properties, making it indispensable in communications, defense, and power electronics. With high electron mobility and robust thermal conductivity, GaN-based devices excel in high-frequency, high-power applications. They are vital in wireless communication systems, radar, electronic warfare, and power [...] Read more.
Gallium nitride (GaN) offers exceptional material properties, making it indispensable in communications, defense, and power electronics. With high electron mobility and robust thermal conductivity, GaN-based devices excel in high-frequency, high-power applications. They are vital in wireless communication systems, radar, electronic warfare, and power electronics systems, offering superior performance, efficiency, and reliability. Further research is crucial for optimizing GaN-based devices performance and expanding their applications, driving innovation across industries. The application of ion implantation technology in GaN-based devices is a key process that can be used to improve device performance and characteristics, which enables process aspects such as electrical isolation, ion implantation for ohmic contacts, threshold voltage regulation, and terminal design. In this paper, we will focus on reviewing the principles and issues of the ion implantation process in GaN-based device preparation. This work aims to serve as a guide for ion implantation in future GaN-based devices. Full article
(This article belongs to the Special Issue Micro/Nano Manufacturing of Electronic Devices)
Show Figures

Figure 1

15 pages, 8373 KB  
Article
Development of Amorphous AlN Thin Films on ITO-Glass and ITO-PET at Low Temperatures by RF Sputtering
by Miriam Cadenas, Michael Sun, Susana Fernández, Sirona Valdueza-Felip, Ana M. Diez-Pascual and Fernando B. Naranjo
Micromachines 2025, 16(9), 993; https://doi.org/10.3390/mi16090993 (registering DOI) - 29 Aug 2025
Viewed by 116
Abstract
Aluminum nitride (AlN) is a material of wide interest in the optoelectronics and high-power electronics industry. The deposition of AlN thin films at elevated temperatures is a well-established process, but its implementation on flexible substrates with conductive oxides, such as ITO-glass or ITO-PET, [...] Read more.
Aluminum nitride (AlN) is a material of wide interest in the optoelectronics and high-power electronics industry. The deposition of AlN thin films at elevated temperatures is a well-established process, but its implementation on flexible substrates with conductive oxides, such as ITO-glass or ITO-PET, poses challenges due to the thermal degradation of these materials. In this work, the deposition and characterization of AlN thin films by reactive sputtering at a low temperature (RT and 100 °C) on ITO-glass and ITO-PET substrates are presented. The structural, optical, and electrical properties of the samples have been analysed as a function of the sputtering power and the deposition temperature. XRD analysis revealed the absence of peaks of crystalline AlN, indicative of the formation of an amorphous phase. EDX measurements performed on the ITO-glass substrate with a radiofrequency power applied to the Al target of 175 W confirmed the presence of Al and N, corroborating the deposition of AlN. SEM analyses showed the formation of homogeneous and compact layers, and transmission optical measurements revealed a bandgap of around 5.82 eV, depending on the deposition conditions. Electrical resistivity measurements indicated an insulating character. Overall, these findings confirm the potential of amorphous AlN for applications in flexible optoelectronic devices. Full article
Show Figures

Figure 1

21 pages, 13165 KB  
Article
Experimental Study of Photopolymer Resin Composition for AlN Ceramic 3D Printing via Digital Light Processing
by Ning Kuang, Yifan Liu, Wenjie Zhao and Junfei Wu
Polymers 2025, 17(17), 2344; https://doi.org/10.3390/polym17172344 - 29 Aug 2025
Viewed by 165
Abstract
Aluminum nitride (AlN) ceramics exhibit exceptional properties that render them highly valuable for diverse industrial applications. However, conventional manufacturing techniques encounter significant challenges in fabricating complex AlN components with precise geometries. To address these limitations, digital light processing (DLP) has emerged as a [...] Read more.
Aluminum nitride (AlN) ceramics exhibit exceptional properties that render them highly valuable for diverse industrial applications. However, conventional manufacturing techniques encounter significant challenges in fabricating complex AlN components with precise geometries. To address these limitations, digital light processing (DLP) has emerged as a promising additive manufacturing approach for AlN ceramics. This study presents a systematic investigation of the monomer composition in the photopolymer resin system through a comprehensive experimental evaluation. The results demonstrate that an optimized mixture of monomers ACMO (56.7 wt%), DEGDA (2.7 wt%), and TMPTA (40.6 wt%) yields photopolymer resin with superior comprehensive performance. Utilizing this optimized formulation, a 50 vol% solid loading AlN ceramic slurry was successfully prepared, and subsequently, dense AlN ceramic components were fabricated through DLP. This provides an important basis for optimizing the slurry preparation of AlN ceramic fabrication based on DLP 3D printing. Full article
(This article belongs to the Special Issue Latest Research on 3D Printing of Polymer and Polymer Composites)
Show Figures

Figure 1

15 pages, 1060 KB  
Article
Optimization of Nitrogen Injection via Top-Blown O2–N2 Mixed Gas in BOF Steelmaking for Enhanced Rebar Performance
by Mingwei Tu, Chao Feng, Tao Lin, Rong Zhu, Huapeng Yang, Guangsheng Wei and Jie Zhang
Metals 2025, 15(9), 960; https://doi.org/10.3390/met15090960 - 29 Aug 2025
Viewed by 146
Abstract
Rebar is a critical material in concrete constructions like high-rise buildings and seismic-resistant structures. To enhance its properties, microalloying with nitrogen is employed, but traditional methods using micro alloy additives such as vanadium (FeV), niobium (FeNb), titanium (FeTi), and vanadium nitride (VN) face [...] Read more.
Rebar is a critical material in concrete constructions like high-rise buildings and seismic-resistant structures. To enhance its properties, microalloying with nitrogen is employed, but traditional methods using micro alloy additives such as vanadium (FeV), niobium (FeNb), titanium (FeTi), and vanadium nitride (VN) face issues of high costs, reduced purity, and difficulty in controlling molten steel composition. This article presents a novel approach of injecting top-blown O2–N2 mixed gas to increase nitrogen content efficiently. Experiments simulated HRB400 steel samples, varying N2 ratios (10%, 20%, 30%, 40%), temperatures (1500 °C, 1550 °C, 1600 °C), and blowing times (1, 2, 3 min). Results show that optimized parameters enable nitrogen content adjustment from 50 to 104 ppm, with nitrogen utilization improved to 5.4%. This method utilizes inexpensive N2 gas, reduces impurities, and provides precise control, offering a cost-effective and sustainable solution for high-performance steel production by replacing costly alloys and meeting nitrogen requirements. Full article
(This article belongs to the Special Issue Smelting Process of Metals)
Show Figures

Figure 1

15 pages, 4071 KB  
Article
Electrostatic MEMS Phase Shifter for SiN Photonic Integrated Circuits
by Seyedfakhreddin Nabavi, Michaël Ménard and Frederic Nabki
J. Sens. Actuator Netw. 2025, 14(5), 88; https://doi.org/10.3390/jsan14050088 - 29 Aug 2025
Viewed by 188
Abstract
Optical phase modulation is essential for a wide range of silicon photonic integrated circuits used in communication applications. In this study, an optical phase shifter utilizing photo-elastic effects is proposed, where mechanical stress is induced by electrostatic micro-electro-mechanical systems (MEMS) with actuators arranged [...] Read more.
Optical phase modulation is essential for a wide range of silicon photonic integrated circuits used in communication applications. In this study, an optical phase shifter utilizing photo-elastic effects is proposed, where mechanical stress is induced by electrostatic micro-electro-mechanical systems (MEMS) with actuators arranged in a comb drive configuration. The design incorporates suspended serpentine silicon nitride (SiN) optical waveguides. Through extensive numerical simulations, it is shown that the change in the effective refractive index (neff) of the optical waveguide is a function of the voltage applied to the electrostatic actuators and that such neff tuning can be achieved for a broad range of wavelengths. Implemented within one arm of an unbalanced Mach–Zehnder interferometer (MZI), the phase shifter achieves a phase change of π when the stressed optical path measures 4.7 mm, and the actuators are supplied with 80 V DC and consume almost no power. This results in a half-wave voltage-length product (VπL) of 37.6 V·cm. Comparative analysis with contemporary optical phase shifters highlights the proposed design’s superior power efficiency, compact footprint, and simplified fabrication process, making it a highly efficient component for reconfigurable MEMS-based silicon nitride photonic integrated circuits. Full article
Show Figures

Figure 1

20 pages, 6318 KB  
Article
Mechanical, Tribological, and Corrosion Behavior of Magnetron-Sputtered VN Coatings Deposited at Different Substrate Temperatures
by Stanislava Rabadzhiyska, Dimitar Dechev, Nikolay Ivanov, Maria Shipochka, Genoveva Atanasova, Velichka Strijkova, Vesela Katrova and Nina Dimcheva
Metals 2025, 15(9), 955; https://doi.org/10.3390/met15090955 - 28 Aug 2025
Viewed by 259
Abstract
Vanadium nitride (VN) ceramic layers were deposited on 304L stainless steel specimens by direct current (DC) magnetron sputtering in an Ar/N2 gas mixture at substrate temperatures of 250 °C, 300 °C, and 350 °C. The obtained films were evaluated by X-ray diffraction [...] Read more.
Vanadium nitride (VN) ceramic layers were deposited on 304L stainless steel specimens by direct current (DC) magnetron sputtering in an Ar/N2 gas mixture at substrate temperatures of 250 °C, 300 °C, and 350 °C. The obtained films were evaluated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM). The results showed the existence of VN and V2N phases in the as-deposited coatings. It was found that the surface roughness parameter (Ra = 10 nm) decreased with increasing substrate temperatures up to 350 °C. The highest hardness (10.6 GPa) was achieved in the layer produced at 300 °C. The low values of plastic and elastic deformation, as well as a low friction coefficient (0.38), led to an enhancement in the coatings’ tribological properties. The film’s thickness increased with increasing temperature due to the presence of nucleation centers in the films. The highest thickness (557 nm) was achieved in the layer deposited at 350 °C. The electrochemical tests exhibited reliable protection against corrosion in strongly aggressive electrolytes. It has been proven that the temperature significantly affects the ceramic coatings’ structural, morphological, tribological, and corrosion properties. Full article
(This article belongs to the Special Issue Surface Treatments and Coating of Metallic Materials)
Show Figures

Figure 1

15 pages, 3496 KB  
Article
Effect of Composition on Electrical Resistivity and Secondary Electron Emission Regularities of Tantalum Nitride Films Fabricated by Sputtering with Various Nitrogen Gas Flow Ratios
by Yali Su, Quantai Wang and Tiantian Wang
Inorganics 2025, 13(9), 289; https://doi.org/10.3390/inorganics13090289 - 28 Aug 2025
Viewed by 248
Abstract
Tantalum nitride (TaN) is a typical transition metal nitride characterized by a wide range of tunable resistivity. Low-resistance TaN even exhibits a resistivity similar to that of metals. Given that electrical resistance influences secondary electron emission (SEE) behavior, this study investigates the relationship [...] Read more.
Tantalum nitride (TaN) is a typical transition metal nitride characterized by a wide range of tunable resistivity. Low-resistance TaN even exhibits a resistivity similar to that of metals. Given that electrical resistance influences secondary electron emission (SEE) behavior, this study investigates the relationship between TaN film resistivity and SEE characteristics. Five TaN films were deposited by varying the N2 gas flow rate during sputtering. Morphological analyses revealed that the film thicknesses ranged from approximately 197 to 281 nm. X-ray photoelectron spectroscopy (XPS) results indicated that the Ta:N atomic ratio of the films ranged from approximately 0.53 to 0.87. Furthermore, XPS detected non-adsorbed oxygen on the surfaces of the TaN films, and more detailed XPS analysis revealed the formation of TaON compounds on the surfaces due to oxygen exposure. X-ray diffraction patterns confirmed that the TaN films contained two crystal phases: Ta2N (002) and TaN (200). Sheet resistivity tests showed that the resistivity of the TaN films ranged from 5.67 × 10−3 to 2.43 Ω·cm. Furthermore, the lower the Ta:N atomic ratio was, the lower the electrical resistivity of the films became. SEE coefficient (SEEC) showed a clear positive correlation with the films’ electrical resistivity. Specifically, films with lower resistivity exhibited reduced SEEC values. When the N2 gas flow rate was 16 sccm (N2:Ar = 16:0), the film exhibited the smallest SEEC (maximum ~1.88); when the N2 flow rate was 0 sccm (N2:Ar = 0:16), the film showed the largest SEEC (maximum ~2.25). This research provides valuable references for expanding the application of TaN films in engineering scenarios involving electrical resistivity adjustment and SEE applications. Full article
Show Figures

Figure 1

Back to TopTop