Mesomorphic Investigation of Binary Mixtures of Liquid Crystal Molecules with Different Mesogenic Architectonics
Abstract
:1. Introduction
2. Results and Discussion
2.1. Mesophase Behavior of Pure Materials
- As the alkoxy-chain length (n) rises, there is an increase in the lateral adhesion between linear molecules.
- Different mesomeric effects result from an end-to-end association that changes depending on the polar terminal moiety, which in turn results in different dipole-dipole interactions.
- It was found that the lateral methoxy substituents’ steric influence varied depending on their position and, subsequently, their orientation.
- The molecule’s molecular structure affects the mesophase structure.
2.2. Mesophase Behavior of Binary Phase Diagrams
2.2.1. Binary Mesophase Behavior of the Laterally F-Substituted Azo/Ester Derivatives with Their Laterally Neat Series
2.2.2. Binary Mesophase Behavior of the Laterally CH3O-Substituted Azomethine/Ester Derivatives with Their Laterally Neat Analogues
2.2.3. Binary Mesophase Behavior of Two Different Laterally Substituted Derivatives with Different Linkages
3. Experimental
4. Conclusions
- For systems of binary phase diagrams made from laterally F- substituted azo/ester derivatives with their laterally neat compounds, all systems showed enantiotropic N mesophase, which changes more or less linearly with composition.
- For binary systems made from laterally methoxy-substituted azomethine/ester derivatives with their laterally neat analogues, all systems showed a solid eutectic behavior associated with a linear decrement smectic A behavior. For the electron-withdrawing homologues (X = F), the SmA phase is totally covering all the compositions of IV6e, while for X = H, the SmA phase is destroyed upon addition of about 60% mole IV6c.
- In the binary systems of the two differently laterally substituted derivatives having different linkages, the mesomorphic properties of mixtures have been affected by the different mesogenic structures of both azo and azomethine derivatives.
- All binary mixture systems show eutectic mixtures with depression in melting transitions.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gilani, A.G.; Khoshroo, N.; Mohammadi, M.; Kula, P.; Rychłowicz, N. Optical and thermodynamic studies on binary mixtures composed of two-isothiocyanato liquid crystals. J. Mol. Liq. 2023, 369, 120925. [Google Scholar] [CrossRef]
- Chaudhary, M.; Ghildyal, D. Investigations of axioms of twist grain boundary phases (TGBPs) in binary mixture of liquid crystals. Int. J. Mod. Phys. B 2023, 37, 2450006. [Google Scholar] [CrossRef]
- Alhaddad, O.A.; Khushaim, M.S.; Gomha, S.M.; Ahmed, H.A.; Naoum, M.M. Mesophase behavior of four ring ester/azomethine/ester liquid crystals in pure and mixed states. Liq. Cryst. 2022, 49, 1395–1402. [Google Scholar] [CrossRef]
- de Gennes, P.G. The Physics of Liquid Crystals, 2nd ed.; Clarendon: Oxford, UK, 1993. [Google Scholar]
- Chandrasekhar, S. Liquid Crystals; Cambridge University Press: Cambridge, UK, 1977. [Google Scholar]
- de Jeu, W.H. Physical Properties of Liquid Crystal Materials; Gordon and Breach: New York, NY, USA, 1980. [Google Scholar]
- Blinov, L.M.; Chigrinov, V.G. Electrooptic Effects in Liquid Crystal Materials; Springer: New York, NY, USA, 1994. [Google Scholar]
- Pramod, P.A.; Pratibha, R.; Madhusudana, N.V. A three-dimensionally modulated structure in a chiral smectic-C liquid crystal. Curr. Sci. 1997, 73, 761–765. [Google Scholar]
- Dhara, S.; Pratibha, R.; Madhusudana, N.V. Some experimental investigations on type II chiral liquid crystals. Ferroelectrics 2002, 277, 13–23. [Google Scholar] [CrossRef]
- Pratibha, R.; Madhusudana, N.V.; Sadashiva, B.K. An orientational transition of bent-core molecules in an aniso-tropic matrix. Science 2000, 288, 2184–2187. [Google Scholar] [CrossRef]
- Madhusudana, N. Liquid crystals made of highly polar compounds. Braz. J. Phys. 1998, 28, 301–303. [Google Scholar] [CrossRef]
- Warrier, S.R.; Vijayaraghavan, D.; Madhusudana, N.V. Evidence for a nematic-nematic transition in thin cells of a highly polar compound. EPL Europhys. Lett. 1998, 44, 296–301. [Google Scholar] [CrossRef]
- Prost, J.; Toner, J. Dislocation-loop melting theory of phase diagrams with nematic regions surrounded by smectic regions. Phys. Rev. A 1987, 36, 5008–5014. [Google Scholar] [CrossRef]
- Cladis, P.E. New Liquid-Crystal Phase Diagram. Phys. Rev. Lett. 1975, 35, 48–51. [Google Scholar] [CrossRef]
- Ananthaiah, J.; Sahoo, R.; Rasna, M.V.; Dhara, S. Rheology of nematic liquid crystals with highly polar molecules. Phys. Rev. E 2014, 89, 022510. [Google Scholar] [CrossRef] [PubMed]
- Omar, A.Z.; El-Atawy, M.A.; Alsubaie, M.S.; Alazmi, M.L.; Ahmed, H.A.; Hamed, E.A. Synthesis and Computa-tional Investigations of New Thioether/Azomethine Liquid Crystal Derivatives. Crystals 2023, 13, 378. [Google Scholar] [CrossRef]
- Jevtovic, V.; Ahmed, H.A.; Khan, M.T.; Al-Zahrani, S.A.; Masood, N.; Jeilani, Y.A. Preparation of Laterally Chlo-ro-Substituted Schiff Base Ester Liquid Crystals: Mesomorphic and Optical Properties. Crystals 2023, 13, 835. [Google Scholar] [CrossRef]
- Ikeda, T. Photomodulation of liquid crystal orientations for photonic applications. J. Mater. Chem. 2003, 13, 2037–2057. [Google Scholar] [CrossRef]
- Al-Zahrani, S.A.; Khan, M.T.; Jevtovic’, V.; Masood, N.; Jeilani, Y.A.; Ahmed, H.A. Design of Liquid Crystal Materials Based on Palmitate, Oleate, and Linoleate Derivatives for Optoelectronic Applications. Molecules 2023, 28, 1744. [Google Scholar] [CrossRef] [PubMed]
- Blatch, A.E.; Luckhurst, G.R. The liquid crystal properties of symmetric and non-symmetric dimmers based on the azobenzene mesogenic group. Liq. Cryst. 2000, 27, 775–787. [Google Scholar] [CrossRef]
- Thaker, B.T.; Kanojiya, J.B. Mesomorphic properties of liquid crystalline compounds with biphenyl moiety containing azo-ester, azo-cinnamate linkages and different terminal group. Liq. Cryst. 2011, 38, 1035–1055. [Google Scholar] [CrossRef]
- Alaasar, M. Azobenzene-containing bent-core liquid crystals: An overview. Liq. Cryst. 2016, 43, 2208–2243. [Google Scholar] [CrossRef]
- Niezgoda, I.; Jaworska, J.; Pociecha, D.; Galewski, Z. The kinetics of the E-Z-E isomerisation and liquid-crystalline properties of selected azobenzene derivatives investigated by the prism of the ester group inversion. Liq. Cryst. 2015, 42, 1148–1158. [Google Scholar] [CrossRef]
- Hegde, G.; Shanker, G.; Gan, S.M.; Yuvaraj, A.R.; Mahmood, S.; Mandal, U.K. Synthesis and liquid crystalline behaviour of substituted (E)-phenyl-4-(phenyldiazenyl) benzoate derivatives and their photo switching ability. Liq. Cryst. 2016, 43, 1578–1588. [Google Scholar] [CrossRef]
- Paterson, D.A.; Xiang, J.; Singh, G.; Walker, R.; Agra-Kooijman, D.M.; Martinez-Felipe, A.; Gan, M.; Storey, J.M.D.; Kumar, S.; Lavrentovich, O.D.; et al. Reversible Isothermal Twist-Bend Nematic-Nematic Phase Transition Driven by the Photoisomerization of an Azobenzene-Based Nonsymmetric Liquid Crystal Dinner. J. Am. Chem. Soc. 2016, 138, 5283–5289. [Google Scholar] [CrossRef]
- Al-Zahrani, S.A.; Khan, M.T.; Jevtovic, V.; Masood, N.; Jeilani, Y.A.; Ahmed, H.A.; Alfaidi, F.M. Liquid Crystalline Mixtures with Induced Polymorphic Smectic Phases Targeted for Energy Investigations. Crystals 2023, 13, 645. [Google Scholar] [CrossRef]
- Henderson, P.A.; Cook, A.G.; Imrie, C.T. Oligomeric liquid crystals: From monomers to trimers. Liq. Cryst. 2004, 31, 1427–1434. [Google Scholar] [CrossRef]
- Aldahri, T.H.; Alaasar, M.; Ahmed, H.A. The influence of core fluorination on the phase behaviour of rod-like mesogens. Liquid Cryst. 2023, 1–10. [Google Scholar] [CrossRef]
- Srinivasa, H.T. New symmetric azobenzene molecules of varied central cores: Synthesis and characterisation for liquid crystalline properties. Liq. Cryst. 2017, 44, 1384–1393. [Google Scholar] [CrossRef]
- El-Atawy, M.A.; Omar, A.Z.; Alazmi, M.L.; Alsubaie, M.S.; Hamed, E.A.; Ahmed, H.A. Synthesis and characterization of new imine liquid crystals based on terminal perfluoroalkyl group. Heliyon 2023, 9, e14871. [Google Scholar] [CrossRef]
- Wang, M.; Guo, L.X.; Lin, B.P.; Zhang, X.Q.; Sun, Y.; Yang, H. Photo-responsive polysiloxane-based azobenzene liquid crystalline polymers prepared by thiol-ene click chemistry. Liq. Cryst. 2016, 43, 1626–1635. [Google Scholar] [CrossRef]
- Goodby, J.W.; Mandle, R.J.; Davis, E.J.; Zhong, T.; Cowling, S.J. What makes a liquid crystal? The effect of free volume on soft matter. Liq. Cryst. 2015, 42, 593–622. [Google Scholar] [CrossRef]
- Karim, M.R.; Sheikh, M.R.K.; Yahya, R.; Mohamad Salleh, N.; Lo, K.M.; Mahmud, H.E. The effect of terminal substituents on crystal structure, mesophase behaviour and optical property of azo-ester linked materials. Liq. Cryst. 2016, 43, 1862–1874. [Google Scholar] [CrossRef]
- Thaker, B.T.; Kanojiya, J.B.; Tandel, R.S. Effects of different terminal substituents on the mesomorphic behavior of some azo-schiff base and azo-ester-based liquid crystals. Mol. Cryst. Liq. Cryst. 2010, 528, 120–137. [Google Scholar] [CrossRef]
- Naoum, M.M.; Fahmi, A.A.; Alaasar, M.A.; Ahmed, N.H.S. Effect of exchange of terminal substituents on the mesophase behavior of laterally methyl substituted phenylazo benzoates in pure and mixed systems. Thermochim. Acta 2011, 525, 78–86. [Google Scholar] [CrossRef]
- Naoum, M.M.; Ahmed, H.A.; Fahmi, A.A. Liquid crystalline behavior of model compounds di-laterally substituted with different polar groups. Liq. Cryst. 2011, 38, 511–5199. [Google Scholar] [CrossRef]
- Thaker, B.T.; Dhimmar, Y.T.; Patel, B.S.; Solanki, D.B.; Patel, N.B.; Chothani, N.J.; Kanojiya, J. Studies of calamitic liquid crystalline compounds involving ester-azo central linkages with a biphenyl moiety. Mol. Cryt. Liq. Cryst. 2011, 548, 172–191. [Google Scholar] [CrossRef]
- Dixit, S.; Vora, R.A. Novel azoester compounds with a lateral methyl substituent. Mol. Cryst. Liq. Cryst. 2014, 592, 133–140. [Google Scholar] [CrossRef]
- Ahmed, H.A.; Saad, G.R. Mesophase behaviour of laterally di-fluoro-substituted four-ring compounds. Liq. Cryst. 2015, 42, 1765–1772. [Google Scholar] [CrossRef]
- Naoum, M.M.; Metwally, N.H.; Abd Eltawab, M.M.; Ahmed, H.A. Polarity and steric effect of the lateral substituent on the mesophase behaviour of some newly prepared liquid crystals. Liq. Cryst. 2015, 42, 1351–1369. [Google Scholar] [CrossRef]
- Naoum, M.M.; Fahmi, A.A.; Ahmed, N.H.; Saad, G.R. The effect of inversion of the ester group on the mesophase behavior of some azo/ester compounds. Liq. Cryst. 2015, 42, 1298–1308. [Google Scholar] [CrossRef]
- Naoum, M.M.; Fahmi, A.A.; Ahmed, N.H.; Saad, G.R. The effect of lateral methyl substitution on the mesophase behavior of aryl 4-alkoxyphenylazo benzoates. Liq. Cryst. 2015, 42, 1627–1637. [Google Scholar]
- Naoum, M.M.; Fahmi, A.A.; Saad, G.R.; Ali, M.H. Polarity and steric effect of di-lateral substitution on the mesophase behaviour of some azo/ester compounds. Liq. Cryst. 2017, 44, 1664–1677. [Google Scholar] [CrossRef]
- Matsuyama, A.; Kato, T. Phase diagrams of polymer dispersed liquid crystals. J. Chem. Phys. 1998, 108, 2067–2072. [Google Scholar] [CrossRef]
- Naoum, M.M.; Fahmi, A.A.; Abaza, A.H.; Saad, G.R. Effect of exchange of terminal substituents on the mesophase behaviour of some azo/ester compounds. Liq. Cryst. 2014, 41, 1559–1568. [Google Scholar] [CrossRef]
- Cohen, E.; Malka, D.; Shemer, A.; Shahmoon, A.; Zalevsky, Z.; London, M. Neural networks within multi-core optic fibers. Sci. Rep. 2016, 6, 29080. [Google Scholar] [CrossRef] [PubMed]
- Pugachov, Y.; Gulitski, M.; Mizrahi, O.; Malka, D. Design of All-Optical Logic Half-Adder Based on Photonic Crystal Multi-Ring Resonator. Symmetry 2023, 15, 1063. [Google Scholar] [CrossRef]
- Marinescu, D.C.; Pincu, E.; Meltzer, V. Thermal analysis of binary liquid crystals eutectic system cholesteril p-phenoxi phenyl carbamate–cholesteril p-biphenyl carbamate. J. Therm. Anal. Calorim. 2012, 110, 985–990. [Google Scholar] [CrossRef]
- Lu, Z.; Henderson, P.A.; Paterson, B.J.A.; Imrie, C.T. Liquid crystal dimers and the twist-bend nematic phase. The preparation and characterisation of the alpha,omega-bis(4-cyanobiphenyl-4′-yl) alkanedioates. Liq. Cryst. 2014, 41, 471–483. [Google Scholar] [CrossRef]
- Ahmed, H.A. Thermal behavior of binary mixtures of isomers of different molecular structures and different lateral substituent positions. J. Therm Anal. Calorim. 2016, 125, 823–830. [Google Scholar] [CrossRef]
- Abberley, J.P.; Jansze, S.M.; Walker, R.; Paterson, D.A.; Henderson, P.A.; Marcelis, A.T.M.; Storey, J.M.D.; Imrie, C.T. Structure-property relationships in twist-bend nematogens: The influence of terminal groups. Liq. Cryst. 2017, 44, 68–83. [Google Scholar] [CrossRef]
- Alamro, F.S.; Ahmed, H.A.; El-Atawy, M.A.; Al-Zahrani, S.A.; Omar, A.Z. Induced Nematic Phase of New Synthesized Laterally Fluorinated Azo/Ester Derivatives. Molecules 2021, 26, 4546. [Google Scholar] [CrossRef]
- Nafee, S.S.; Hagar, M.; Ahmed, H.A.; El-Shishtawy, R.M.; Raffah, B.M. The synthesis of new thermal stable schiff base/ester liquid crystals: A computational, mesomorphic, and optical study. Molecules 2019, 24, 3032. [Google Scholar] [CrossRef]
- Gomha, S.M.; Ahmed, H.A.; Shaban, M.; Abolibda, T.Z.; Khushaim, M.S.; Alharbi, K.A. Synthesis, optical characterizations and solar energy applications of new Schiff base materials. Materials 2021, 14, 3718. [Google Scholar] [CrossRef]
- Naoum, M.M.; Saad, G.R.; Nessim, R.I.; Abdel-Aziz, T.A.; Seliger, H. Effect of molecular structure on the phase behaviour of some liquid crystalline compounds and their binary mixtures II. 4-hexadecyloxyphenyl acrylates and aryl 4-hexadecyloxy benzoates. Liq. Cryst. 1997, 23, 789–795. [Google Scholar] [CrossRef]
- Omar, A.Z.; Alazmi, M.L.; Alsubaie, M.S.; Hamed, E.A.; Ahmed, H.A.; El-Atawy, M.A. Synthesis of New Liquid-Crystalline Compounds Based on Terminal Benzyloxy Group: Characterization, DFT and Mesomorphic Properties. Molecules 2023, 28, 3804. [Google Scholar] [CrossRef] [PubMed]
- Park, J.W.; Bak, C.S.; Labes, M.M. Effects of molecular complexing on the properties of binary nematic liquid crystal mixtures. J. Am. Chem. Soc. 1975, 97, 4398–4400. [Google Scholar] [CrossRef]
- Araya, K.; Matsunaga, Y. Liquid Crystal Formation in Binary Systems. I. An Interpretation of the Phase Diagrams of the Azoxydianisole–Schiff Base Systems. Bull. Chem. Soc. Jpn. 1980, 53, 989–993. [Google Scholar] [CrossRef]
- Dave, J.S.; Lohar, J.M. Liquid-crystalline characteristics of ester mesogens-para-chlorophenyl para’-normal-alkoxycinnamates. J. Indian Chem. Soc. 1989, 66, 25–27. [Google Scholar]
- Lohar, J.M.; Dave, J.S., Jr. Emergence of smectic mesophase in binary mixtures of pure nematogens. Mol. Cryst. Liq. Cryst. 1983, 103, 181–192. [Google Scholar] [CrossRef]
- Mlodziejowski, A. Dissoziation der flüssigen Kristalle. Z. Phys. Chem. 1928, 135, 129–146. [Google Scholar] [CrossRef]
- Gaubert, P. Nouvelle contribution à l’étude des sphérolites (polymorphisme de la codéine, de la thébaïne et de la narcotine). Bull. Minéral. 1913, 36, 45–64. [Google Scholar] [CrossRef]
- Kravchenko, V.M.; Pastukhova, I.S. Dvukhkomponentnye tverdye rastvory i evtekticheskie sistemy indena, izokhinolina, naftalina i benzola. Zhurnal Prikl. Khimii 1952, 25, 313–321. [Google Scholar]
- Dave, J.S.; Menon, M.R.; Patel, P.R. Synthesis and mesomorphic characteristics of mesogens with branched isoamyloxy and isobutyloxy terminal groups. Mol. Cryst. Liq. Cryst. 2002, 378, 1–11. [Google Scholar] [CrossRef]
- Schroeder, J.P.; Bristol, D.W. Liquid crystals. IV. Effects of terminal substituents on the nematic mesomorphism of p-phenylene dibenzoates. J. Org. Chem. 1973, 38, 3160–3164. [Google Scholar] [CrossRef]
- Park, J.W.; Labes, M.M. Broadening of the nematic temperature range by a non-mesogenic solute in a nematic liquid crystal. Mol. Cryst. Liq. Cryst. 1976, 34, 147–152. [Google Scholar] [CrossRef]
- Oh, C.S. Induced smectic mesomorphism by incompatible nematogens. Mol. Cryst. Liq. Cryst. 1977, 42, 1–14. [Google Scholar] [CrossRef]
- Saad, G.R.; Nessim, R.I. Effect of molecular structure on the phase behaviour o some liquid crystalline compounds and their binary mixtures VI [1]. The effect of molecular length. Liq. Cryst. 1999, 26, 629–636. [Google Scholar] [CrossRef]
- Ahmed, H.A.; Mansour, E.; Hagar, M. Mesomorphic study and DFT simulation of calamitic Schiff base liquid crystals with electronically different terminal groups and their binary mixtures. Liq. Cryst. 2020, 47, 2292–2304. [Google Scholar] [CrossRef]
- Alnoman, R.B.; Hagar, M.; Ahmed, H.A.; Naoum, M.M.; Sobaih, H.A.; Almshaly, J.S.; Haddad, M.M.; Alhaisoni, R.A.; Alsobhi, T.A. Binary liquid crystal mixtures based on schiff base derivatives with oriented lateral substituents. Crystals 2020, 10, 319. [Google Scholar] [CrossRef]
- Alhaddad, O.A.; Ahmed, H.A.; Hagar, M.; Saad, G.R.; Abu Al-Ola, K.A.; Naoum, M.M. Thermal and photophysical studies of binary mixtures of liquid crystal with different geometrical mesogens. Crystals 2020, 10, 223. [Google Scholar] [CrossRef]
- Alamro, F.S.; Ahmed, H.A.; Bedowr, N.S.; Naoum, M.M.; Mostafa, A.M.; Al-Kadhi, N.S. New liquid crystals based on terminal fatty chains and polymorphic phase formation from their mixtures. Crystals 2022, 12, 350. [Google Scholar] [CrossRef]
Comp. | X | Phase Transitions |
---|---|---|
I6a | OCH3 | Cr 107 (44.11) N 257 (2.21) I |
I6b | CH3 | Cr 130 (38.18) N 215 (1.70) I |
I6c | H | Cr 122 (34.41) N 161 (2.57) I |
II6a | OCH3 | Cr 99 (43.12) N 186 (1.91) I |
II6b | CH3 | Cr 131(48.23) N 167 (2.24) I |
II6c | H | Cr 108 (55.34) I |
II6d | Cl | Cr 125 (44.25) N 232 (2.11) I |
II6e | F | Cr 100 (40.13) N 181 (1.52) I |
III6c | H | Cr 67 (28.38) SmA 87 (1.92) I |
III6e | F | Cr 74 (25.49) SmA 148 (1.81) I |
IV6a | OCH3 | Cr 105 (62.51) N 156 (0.99) I |
IV6b | CH3 | Cr 90 (49.71) N 141 (0.78) I |
IV6c | H | Cr 99 (53.44) I |
IV6d | Cl | Cr 99 (58.36) N 137 (0.64) I |
IV6e | F | Cr 122 (48.50) N 117 * (0.72) * I |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alamro, F.S.; Ahmed, H.A.; Khushaim, M.S.; Bedowr, N.S.; Al-Kadhi, N.S. Mesomorphic Investigation of Binary Mixtures of Liquid Crystal Molecules with Different Mesogenic Architectonics. Crystals 2023, 13, 899. https://doi.org/10.3390/cryst13060899
Alamro FS, Ahmed HA, Khushaim MS, Bedowr NS, Al-Kadhi NS. Mesomorphic Investigation of Binary Mixtures of Liquid Crystal Molecules with Different Mesogenic Architectonics. Crystals. 2023; 13(6):899. https://doi.org/10.3390/cryst13060899
Chicago/Turabian StyleAlamro, Fowzia S., Hoda A. Ahmed, Muna S. Khushaim, Noha S. Bedowr, and Nada S. Al-Kadhi. 2023. "Mesomorphic Investigation of Binary Mixtures of Liquid Crystal Molecules with Different Mesogenic Architectonics" Crystals 13, no. 6: 899. https://doi.org/10.3390/cryst13060899
APA StyleAlamro, F. S., Ahmed, H. A., Khushaim, M. S., Bedowr, N. S., & Al-Kadhi, N. S. (2023). Mesomorphic Investigation of Binary Mixtures of Liquid Crystal Molecules with Different Mesogenic Architectonics. Crystals, 13(6), 899. https://doi.org/10.3390/cryst13060899