Temperature-Dependent Optical Behaviors and Demonstration of Carrier Localization in Polar and Semipolar AlGaN Multiple Quantum Wells
Abstract
:1. Introduction
2. Sample Structure and Experiments
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kneissl, M.; Seong, T.-Y.; Han, J.; Amano, H. The emergence and prospects of deep-ultraviolet light-emitting diode technologies. Nat. Photonics 2019, 13, 233–244. [Google Scholar] [CrossRef]
- Amano, H.; Collazo, R.; Santi, C.D.; Einfeldt, S.; Funato, M.; Glaab, J.; Hagedorn, S.; Hirano, A.; Hirayama, H.; Ishii, R.; et al. The 2020 UV emitter roadmap. J. Phys. D Appl. Phys. 2020, 53, 503001. [Google Scholar] [CrossRef]
- Li, J.; Gao, N.; Cai, D.; Lin, W.; Huang, K.; Li, S.; Kang, J. Multiple fields manipulation on nitride material structures in ultraviolet light-emitting diodes. Light Sci. Appl. 2021, 10, 129. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Ben, J.; Xu, F.; Li, J.; Chen, Y.; Sun, X.; Li, D. Review on the Progress of AlGaN-based Ultraviolet Light-Emitting Diodes. Fundam. Res. 2021, 1, 717–734. [Google Scholar] [CrossRef]
- Monavarian, M.; Rashidi, A.; Feezell, D. A Decade of Nonpolar and Semipolar III-Nitrides: A Review of Successes and Challenges. Phys. Status Solidi A 2018, 216, 1800628. [Google Scholar] [CrossRef] [Green Version]
- Dinh, D.V.; Alam, S.N.; Parbrook, P.J. Effect of V/III ratio on the growth of (11-22) AlGaN by metalorganic vapour phase epitaxy. J. Cryst. Growth 2016, 435, 12–18. [Google Scholar] [CrossRef]
- Akaike, R.; Ichikawa, S.; Funato, M.; Kawakami, Y. AlxGa1−xN-based semipolar deep ultraviolet light-emitting diodes. Appl. Phys. Express 2018, 11, 061001. [Google Scholar] [CrossRef]
- Li, Z.; Jiu, L.; Gong, Y.; Wang, L.; Zhang, Y.; Bai, J.; Wang, T. Semi-polar (11-22) AlGaN on overgrown GaN on micro-rod templates: Simultaneous management of crystal quality improvement and cracking issue. Appl. Phys. Lett. 2017, 110, 082103. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Lin, W.; Chen, H.; Xu, H.; Guo, C.; Liu, Z.; Yan, J.; Sun, J.; Liu, H.; Wu, J.; et al. Annihilation and Regeneration of Defects in (11-22) Semipolar AlN via High-Temperature Annealing and MOVPE Regrowth. Cryst. Growth Des. 2021, 21, 2911–2919. [Google Scholar] [CrossRef]
- Jo, M.; Itokazu, Y.; Kuwaba, S.; Hirayama, H. Improved crystal quality of semipolar AlN by employing a thermal annealing technique with MOVPE. J. Cryst. Growth 2019, 507, 307–309. [Google Scholar] [CrossRef]
- Jo, M.; Morishita, N.; Okada, N.; Itokazu, Y.; Kamata, N.; Tadatomo, K.; Hirayama, H. Impact of thermal treatment on the growth of semipolar AlN on m-plane sapphire. AIP Adv. 2018, 8, 105312. [Google Scholar] [CrossRef] [Green Version]
- Xing, K.; Cheng, X.; Wang, L.; Chen, S.; Zhang, Y.; Liang, H. Semi-polar (11–22) AlN epitaxial films on m-plane sapphire substrates with greatly improved crystalline quality obtained by high-temperature annealing. J. Cryst. Growth 2021, 570, 126207. [Google Scholar] [CrossRef]
- Chen, L.; Sun, J.; Guo, W.; Hoo, J.; Lin, W.; Chen, H.; Xu, H.; Yan, L.; Guo, S.; Kang, J.; et al. Multi-step in situ interface modification method for emission enhancement in semipolar deep-ultraviolet light emitting diodes. Photonics Res. 2022, 10, 2778. [Google Scholar] [CrossRef]
- O’Donnell, K.P.; Martin, R.W.; Middleton, P.G. Origin of Luminescence from InGaN Diodes. Phys. Rev. Lett. 1999, 82, 237–240. [Google Scholar] [CrossRef]
- Chichibu, S.; Azuhata, T.; Sota, T.; Nakamura, S. Luminescences from localized states in InGaN epilayers. Appl. Phys. Lett. 1997, 70, 2822–2824. [Google Scholar] [CrossRef]
- Watson-Parris, D.; Godfrey, M.J.; Dawson, P.; Oliver, R.A.; Galtrey, M.J.; Kappers, M.J.; Humphreys, C.J. Carrier localization mechanisms in InxGa1−xN/GaN quantum wells. Phys. Rev. B 2011, 83, 115321. [Google Scholar] [CrossRef] [Green Version]
- Davidson, J.A.; Dawson, P.; Wang, T.; Sugahara, T.; Orton, J.W.; Sakai, S. Photoluminescence studies of InGaN/GaN multi-quantum wells. Semicond. Sci. Technol. 2000, 15, 497–505. [Google Scholar] [CrossRef]
- Karpov, S.Y. Carrier localization in InGaN by composition fluctuations: Implication to the “green gap”. Photonics Res. 2017, 5, A7–A12. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Ji, Z.; Qu, S.; Wang, G.; Jiang, Y.; Liu, B.; Xu, X.; Mino, H. Influence of excitation power and temperature on photoluminescence in InGaN/GaN multiple quantum wells. Opt. Express 2012, 20, 3932–3940. [Google Scholar] [CrossRef]
- Cho, Y.-H.; Gainer, G.H.; Fischer, A.J.; Song, J.J.; Keller, S.; Mishra, U.K.; DenBaars, S.P. “S-shaped” temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells. Appl. Phys. Lett. 1998, 73, 1370–1372. [Google Scholar] [CrossRef]
- Nepal, N.; Li, J.; Nakarmi, M.L.; Lin, J.Y.; Jiang, H.X. Exciton localization in AlGaN alloys. Appl. Phys. Lett. 2006, 88, 062103. [Google Scholar] [CrossRef] [Green Version]
- Mickevicius, J.; Jurkevicius, J.; Tamulaitis, G.; Shur, M.S.; Shatalov, M.; Yang, J.; Gaska, R. Influence of carrier localization on high-carrier-density effects in AlGaN quantum wells. Opt. Express 2014, 22 (Suppl. 2), A491–A497. [Google Scholar] [CrossRef]
- Kazlauskas, K.; Žukauskas, A.; Tamulaitis, G.; Mickevičius, J.; Shur, M.S.; Fareed, R.S.Q.; Zhang, J.P.; Gaska, R. Exciton hopping and nonradiative decay in AlGaN epilayers. Appl. Phys. Lett. 2005, 87, 172102. [Google Scholar] [CrossRef]
- Frankerl, C.; Nippert, F.; Hoffmann, M.P.; Wang, H.; Brandl, C.; Lugauer, H.-J.; Zeisel, R.; Hoffmann, A.; Davies, M.J. Strongly localized carriers in Al-rich AlGaN/AlN single quantum wells grown on sapphire substrates. J. Appl. Phys. 2020, 127, 095701. [Google Scholar] [CrossRef]
- Kim, H.S.; Mair, R.A.; Li, J.; Lin, J.Y.; Jiang, H.X. Time-resolved photoluminescence studies of AlxGa1−xN alloys. Appl. Phys. Lett. 2000, 76, 1252–1254. [Google Scholar] [CrossRef]
- Monavarian, M.; Rosales, D.; Gil, B.; Izyumskaya, N.; Das, S.; Özgür, Ü.; Morkoç, H.; Avrutin, V. Exciton localization in (11-22)-oriented semi-polar InGaN multiple quantum wells. In Proceedings of the Volume 9748, Gallium Nitride Materials and Devices XI, San Francisco, CA, USA, 13–18 February 2016; p. 9748. [Google Scholar] [CrossRef]
- Dinh, D.V.; Presa, S.; Maaskant, P.P.; Corbett, B.; Parbrook, P.J. Exciton localization in polar and semipolar (11-22) In0.2Ga0.8N/GaN multiple quantum wells. Semicond. Sci. Technol. 2016, 31, 08500. [Google Scholar] [CrossRef]
- Zhang, Y.; Smith, R.M.; Hou, Y.; Xu, B.; Gong, Y.; Bai, J.; Wang, T. Stokes shift in semi-polar (11-22) InGaN/GaN multiple quantum wells. Appl. Phys. Lett. 2016, 108, 031108. [Google Scholar] [CrossRef] [Green Version]
- Schomig, H.; Halm, S.; Forchel, A.; Bacher, G.; Off, J.; Scholz, F. Probing individual localization centers in an InGaN/GaN quantum well. Phys. Rev. Lett. 2004, 92, 106802. [Google Scholar] [CrossRef]
- De, S.; Layek, A.; Raja, A.; Kadir, A.; Gokhale, M.R.; Bhattacharya, A.; Dhar, S.; Chowdhury, A. Two Distinct Origins of Highly Localized Luminescent Centers within InGaN/GaN Quantum-Well Light-Emitting Diodes. Adv. Funct. Mater. 2011, 21, 3828–3835. [Google Scholar] [CrossRef]
- Okamoto, K.; Niki, I.; Shvartser, A.; Narukawa, Y.; Mukai, T.; Scherer, A. Surface-plasmon-enhanced light emitters based on InGaN quantum wells. Nat. Mater. 2004, 3, 601–605. [Google Scholar] [CrossRef]
- Oto, T.; Banal, R.G.; Kataoka, K.; Funato, M.; Kawakami, Y. 100 mW deep-ultraviolet emission from aluminium-nitride-based quantum wells pumped by an electron beam. Nat. Photonics 2010, 4, 767–770. [Google Scholar] [CrossRef]
- Liu, L.; Wang, L.; Li, D.; Liu, N.; Li, L.; Cao, W.; Yang, W.; Wan, C.; Chen, W.; Du, W.; et al. Influence of indium composition in the prestrained InGaN interlayer on the strain relaxation of InGaN/GaN multiple quantum wells in laser diode structures. J. Appl. Phys. 2011, 109, 073106. [Google Scholar] [CrossRef]
- Hwang, J.S.; Gokarna, A.; Cho, Y.-H.; Son, J.K.; Lee, S.N.; Sakong, T.; Paek, H.S.; Nam, O.H.; Park, Y. Direct comparison of optical characteristics of InGaN-based laser diode structures grown on pendeo epitaxial GaN and sapphire substrates. Appl. Phys. Lett. 2007, 90, 131908. [Google Scholar] [CrossRef]
- Monroy, E.; Gogneau, N.; Enjalbert, F.; Fossard, F.; Jalabert, D.; Bellet-Amalric, E.; Dang, L.S.; Daudin, B. Molecular-beam epitaxial growth and characterization of quaternary III–nitride compounds. J. Appl. Phys. 2003, 94, 3121–3127. [Google Scholar] [CrossRef]
- Li, J.; Nam, K.B.; Lin, J.Y.; Jiang, H.X. Optical and electrical properties of Al-rich AlGaN alloys. Appl. Phys. Lett. 2001, 79, 3245–3247. [Google Scholar] [CrossRef] [Green Version]
- Cho, Y.H.; Yang, W.; Jhe, W. Dynamics of anomalous optical transitions in AlxGa1-xN alloys. Phys. Rev. B 2000, 61, 7203–7206. [Google Scholar] [CrossRef]
- Lu, T.; Ma, Z.; Du, C.; Fang, Y.; Wu, H.; Jiang, Y.; Wang, L.; Dai, L.; Jia, H.; Liu, W.; et al. Temperature-dependent photoluminescence in light-emitting diodes. Sci. Rep. 2014, 4, 6131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eliseev, P.G.; Perlin, P.; Lee, J.; Osiński, M. “Blue” temperature-induced shift and band-tail emission in InGaN-based light sources. Appl. Phys. Lett. 1997, 71, 569–571. [Google Scholar] [CrossRef]
- Holly Haggar, J.I.; Ghataora, S.S.; Trinito, V.; Bai, J.; Wang, T. Study of the Luminescence Decay of a Semipolar Green Light-Emitting Diode for Visible Light Communications by Time-Resolved Electroluminescence. ACS Photonics 2022, 9, 2378–2384. [Google Scholar] [CrossRef]
Sample | A | Ea (meV) | B | Eb (meV) |
---|---|---|---|---|
Ex situ HTA | 207.4 | 59.3 | 11.4 | 17.8 |
In situ-treated | 184.9 | 69.4 | 11.9 | 16.8 |
c-plane | 98.2 | 53.2 | 1.1 | 8.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ouyang, P.; Liu, K.; Zhang, J.; Chen, Q.; Deng, L.; Yan, L.; Hoo, J.; Guo, S.; Chen, L.; Guo, W.; et al. Temperature-Dependent Optical Behaviors and Demonstration of Carrier Localization in Polar and Semipolar AlGaN Multiple Quantum Wells. Crystals 2023, 13, 1076. https://doi.org/10.3390/cryst13071076
Ouyang P, Liu K, Zhang J, Chen Q, Deng L, Yan L, Hoo J, Guo S, Chen L, Guo W, et al. Temperature-Dependent Optical Behaviors and Demonstration of Carrier Localization in Polar and Semipolar AlGaN Multiple Quantum Wells. Crystals. 2023; 13(7):1076. https://doi.org/10.3390/cryst13071076
Chicago/Turabian StyleOuyang, Ping, Kunzi Liu, Jiaxin Zhang, Qiushuang Chen, Liqiong Deng, Long Yan, Jason Hoo, Shiping Guo, Li Chen, Wei Guo, and et al. 2023. "Temperature-Dependent Optical Behaviors and Demonstration of Carrier Localization in Polar and Semipolar AlGaN Multiple Quantum Wells" Crystals 13, no. 7: 1076. https://doi.org/10.3390/cryst13071076
APA StyleOuyang, P., Liu, K., Zhang, J., Chen, Q., Deng, L., Yan, L., Hoo, J., Guo, S., Chen, L., Guo, W., & Ye, J. (2023). Temperature-Dependent Optical Behaviors and Demonstration of Carrier Localization in Polar and Semipolar AlGaN Multiple Quantum Wells. Crystals, 13(7), 1076. https://doi.org/10.3390/cryst13071076