High-Performance Zr-Doped P3-Type Na0.67Ni0.33Mn0.67O2 Cathode for Na-Ion Battery Applications
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Structure and Morphology
3.2. Surface Chemical Analysis
3.3. Electrochemical Investigations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sun, H.; Song, S.; Xu, X.; Dai, J.; Yu, J.; Zhou, W.; Shao, Z.; Jung, W. Recent Progress on Structurally Ordered Materials for Electrocatalysis. Adv. Energy Mater. 2021, 11, 2101937. [Google Scholar] [CrossRef]
- Sun, H.; Xu, X.; Song, Y.; Zhou, W.; Shao, Z. Designing High-Valence Metal Sites for Electrochemical Water Splitting. Adv. Funct. Mater. 2021, 31, 2009779. [Google Scholar] [CrossRef]
- Olabi, A.G.; Onumaegbu, C.; Wilberforce, T.; Ramadan, M.; Abdelkareem, M.A.; Al-Alami, A.H. Critical Review of Energy Storage Systems. Energy 2021, 214, 118987. [Google Scholar] [CrossRef]
- Hossain, E.; Faruque, H.M.R.; Sunny, M.S.H.; Mohammad, N.; Nawar, N. A Comprehensive Review on Energy Storage Systems: Types, Comparison, Current Scenario, Applications, Barriers, and Potential Solutions, Policies, and Future Prospects. Energies 2020, 13, 3651. [Google Scholar] [CrossRef]
- Yang, L.; Brehm, W. From Lithium-Ion to Sodium-Ion Batteries: Advantages, Challenges, and Surprises. Angew. Chem. Int. Ed. 2017, 57, 102–120. [Google Scholar] [CrossRef]
- Liu, G.; Sun, Z.; Shi, X.; Wang, X.; Shao, L.; Liang, Y.; Lu, X.; Liu, J.; Guo, Z. 2D-Layer-Structure Bi To Quasi-1D-Structure NiBi3: Structural Dimensionality Reduction to Superior Sodium and Potassium Ion Storage. Adv. Mater. 2023, 230551. [Google Scholar] [CrossRef]
- Liang, Y.; Chen, Y.; Ke, X.; Zhang, Z.; Wu, W.; Lin, G.; Zhou, Z.; Shi, Z. Coupling of Triporosity and Strong Au-Li Interaction to Enable Dendrite-Free Lithium Plating/Stripping for Long-Life Lithium Metal Anodes. J. Mater. Chem. A 2020, 8, 18094–18105. [Google Scholar] [CrossRef]
- Liu, G.; Wang, N.; Qi, F.; Lu, X.; Liang, Y.; Sun, Z. Novel Ni-Ge-P Anodes for Lithium-Ion Batteries with Enhanced Reversibility and Reduced Redox Potential. Inorg. Chem. Front. 2022, 10, 699–711. [Google Scholar] [CrossRef]
- Abraham, K.M. How Comparable Are Sodium-Ion Batteries to Lithium-Ion Counterparts? ACS Energy Lett. 2020, 5, 3544–3547. [Google Scholar] [CrossRef]
- Tapia-Ruiz, N.; Armstrong, A.R.; Alptekin, H.; Amores, M.A.; Au, H.; Barker, J.; Boston, R.; Brant, W.R.; Brittain, J.M.; Chen, Y.; et al. 2021 Roadmap for Sodium-Ion Batteries. J. Phys. Energy 2021, 3, 031503. [Google Scholar] [CrossRef]
- Xiao, J.; Li, X.; Tang, K.; Wang, D.; Long, M.; Gao, H.; Chen, W.; Liu, C.; Liu, H.; Wang, G. Recent Progress of Emerging Cathode Materials for Sodium Ion Batteries. Mater. Chem. Front. 2021, 5, 3735–3764. [Google Scholar] [CrossRef]
- Mauger, A.; Julien, C.M. State-of-the-Art Electrode Materials for Sodium-Ion Batteries. Materials 2020, 13, 3453. [Google Scholar] [CrossRef] [PubMed]
- Wei, F.; Zhang, Q.; Zhang, P.; Tian, W.; Dai, K.; Zhang, L.; Mao, J.; Shao, G. Review—Research Progress on Layered Transition Metal Oxide Cathode Materials for Sodium Ion Batteries. J. Electrochem. Soc. 2021, 168, 050524. [Google Scholar] [CrossRef]
- Delmas, C.; Fouassier, C.; Hagenmuller, P. Structural Classificatoin and Properties of the Layered Oxides. Physica B Condens. Matter 1980, 99, 81–85. [Google Scholar] [CrossRef]
- Peng, B.; Sun, Z.; Zhao, L.; Zeng, S.; Zhang, G. Shape-Induced Kinetics Enhancement in Layered P2-Na0.67Ni0.33Mn0.67O2 Porous Microcuboids Enables High Energy/Power Sodium-Ion Full Battery. Batter. Supercaps 2021, 4, 388. [Google Scholar] [CrossRef]
- Delmas, C. Sodium and Sodium-Ion Batteries: 50 Years of Research. Adv. Energy Mater. 2018, 8, 1–9. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, X.; Wang, T.; Fan, L.Z.; Jiao, L. Research and Application Progress on Key Materials for Sodium-Ion Batteries. Sustain. Energy Fuels 2017, 1, 986–1006. [Google Scholar] [CrossRef]
- Yabuuchi, N.; Kubota, K.; Dahbi, M.; Komaba, S.N. Research Development on Sodium-Ion Batteries. Chem. Rev. 2014, 114, 11636–11682. [Google Scholar] [CrossRef]
- Parant, J.; Olazcuaga, R.; Hagenmuller, P. Sur Quelques Nouvelles Phases de Formule NaxMnO2 (x ≤ 1). J. Solid State Chem. 1971, 3, 1–11. [Google Scholar] [CrossRef]
- Clément, R.J.; Bruce, P.G.; Grey, C.P. Review—Manganese-Based P2-Type Transition Metal Oxides as Sodium-Ion Battery Cathode Materials. J. Electrochem. Soc. 2015, 162, A2589–A2604. [Google Scholar] [CrossRef]
- Caballero, A.; Hernán, L.; Morales, J.; Sánchez, L.; Santos Peña, J.; Aranda, M.A.G. Synthesis and Characterization of High-Temperature Hexagonal P2-Na0.6 MnO2 and Its Electrochemical Behaviour as Cathode in Sodium Cells. J. Mater. Chem. 2002, 12, 1142–1147. [Google Scholar] [CrossRef]
- Lu, Z.; Donaberger, R.A.; Dahn, J.R. Superlattice Ordering of Mn, Ni, and Co in Layered Alkali Transition Metal Oxides with P2, P3, and O3 Structures. Chem. Mater. 2000, 12, 3583–3590. [Google Scholar] [CrossRef]
- Paulsen, J.M.; Dahn, J.R. Studies of the Layered Manganese Bronzes, Na2/3[Mn1-xMx]O2 with M = Co, Ni, Li, and Li2/3[Mn1-xMx]O2 Prepared by Ion-Exchange. Solid State Ion. 1999, 126, 3–24. [Google Scholar] [CrossRef]
- Lu, Z.; Dahn, J.R. In Situ X-ray Diffraction Study of P2-Na2/3Ni1/3Mn2/3O2. J. Electrochem. Soc. 2001, 148, A1225. [Google Scholar] [CrossRef]
- Paulsen, J.M.; Larcher, D.; Dahn, J.R. O2 Structure Li2/3[Ni1/3Mn2/3]O2: A New Layered Cathode Material for Rechargeable Lithium Batteries I. Electrochemical Properties. J. Electrochem. Soc. 2000, 147, 861–868. [Google Scholar] [CrossRef]
- Paulsen, J.M.; Larcher, D.; Dahn, J.R. O2 Structure Li2/3[Ni1/3Mn2/3]O2: A New Layered Cathode Material for Rechargeable Lithium Batteries II. Structure, Composition and Properties. J. Electrochem. Soc. 2000, 147, 2478–2485. [Google Scholar] [CrossRef]
- Wang, S.; Sun, C.; Wang, N.; Zhang, Q. Ni- and/or Mn-Based Layered Transition Metal Oxides as Cathode Materials for Sodium Ion Batteries: Status, Challenges and Countermeasures. J. Mater. Chem. A 2019, 7, 10138–10158. [Google Scholar] [CrossRef]
- Paulsen, J.M.; Donaberger, R.A.; Dahn, J.R. Layered T2-, O6-, O2-, and P2-Type A2/3[M’2+1/3M4+2/3]O2 Bronzes, A = Li, Na; M’ = Ni, Mg; M = Mn, Ti. Chem. Mater. 2000, 12, 2257–2267. [Google Scholar] [CrossRef]
- Kalapsazova, M.; Ortiz, G.F.; Tirado, J.L.; Dolotko, O.; Zhecheva, E.; Nihtianova, D.; Mihaylov, L.; Stoyanova, R. P3-Type Layered Sodium-Deficient Nickel-Manganese Oxides: A Flexible Structural Matrix for Reversible Sodium and Lithium Intercalation. Chempluschem 2015, 80, 1642–1656. [Google Scholar] [CrossRef]
- Zhou, Y.-N.; Wang, P.-F.; Zhang, X.-D.; Huang, L.-B.; Wang, W.-P.; Yin, Y.-X.; Xu, S.; Guo, Y.-G. Air-Stable and High-Voltage Layered P3-Type Cathode for Sodium-Ion Full Battery. ACS Appl. Mater. Interface 2019, 11, 24184–24191. [Google Scholar] [CrossRef]
- Shi, C.; Wang, L.; Chen, X.; Li, J.; Wang, S.; Wang, J.; Jin, H. Challenges of layer-structured cathodes for sodium-ion batteries. Nanoscale Horizons 2022, 7, 338–351. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.J.; Ma, L.A.; Duda, L.C.; Pickup, D.M.; Chadwick, A.V.; Younesi, R.; Irvine, J.T.S.; Robert Armstrong, A. Oxygen Redox Activity through a Reductive Coupling Mechanism in the P3-Type Nickel-Doped Sodium Manganese Oxide. ACS Appl. Energy Mater. 2020, 3, 184–191. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, J.; Li, J.; Schuck, G.; Winter, M.; Schumacher, G.; Li, J. Preferential Occupation of Na in P3-Type Layered Cathode Material for Sodium Ion Batteries. Nano Energy 2020, 70, 104535. [Google Scholar] [CrossRef]
- Anilkumar, A.; Nair, N.; Nair, S.; Baskar, S. Tailoring high Na content in P2-type layered oxide cathodes via Cu-Li dual doping for sodium-ion batteries. J. Energy Storage 2023, 72, 108291. [Google Scholar] [CrossRef]
- Liu, Y.; Liao, J.; Tang, Z.; Chao, Y.; Chen, W.; Wu, X.; Wu, W. Improved Sodium Storage Performance of Zn-Substituted P3-Na0.67Ni0.33Mn0.67O2 Cathode Materials for Sodium-Ion Batteries. J. Electron. Mater. 2023, 52, 864–876. [Google Scholar] [CrossRef]
- Zhou, Y.N.; Xiao, Z.; Han, D.; Wang, S.; Chen, J.; Tang, W.; Yang, M.; Shao, L.; Shu, C.; Hua, W.; et al. Inhibition of the P3-O3 Phase Transition via Local Symmetry Tuning in P3-Type Layered Cathodes for Ultra-Stable Sodium Storage. J. Mater. Chem. A 2023, 11, 2618–2626. [Google Scholar] [CrossRef]
- Liu, Q.; Hu, Z.; Zou, C.; Jin, H.; Wang, S.; Li, L. Structural Engineering of Electrode Materials to Boost High-Performance Sodium-Ion Batteries. Cell Rep. Phys. Sci. 2021, 2, 100551. [Google Scholar] [CrossRef]
- Xiao, Y.; Abbasi, N.M.; Zhu, Y.F.; Li, S.; Tan, S.J.; Ling, W.; Peng, L.; Yang, T.; Wang, L.; Guo, X.D.; et al. Layered Oxide Cathodes Promoted by Structure Modulation Technology for Sodium-Ion Batteries. Adv. Funct. Mater. 2020, 30, 1–28. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, X.; Li, X.; Yu, R.; Chen, M.; Tang, K.; Zhang, X. The Novel P3-Type Layered Na0.65Mn0.75Ni0.25O2 Oxides Doped by Non-Metallic Elements for High Performance Sodium-Ion Batteries. Chem. Eng. J. 2019, 360, 139–147. [Google Scholar] [CrossRef]
- Amedzo-Adore, M.; Yang, J.; Han, D.; Chen, M.; Agyeman, D.A.; Zhang, J.; Zhao, R.; Kang, Y.M. Oxygen-Deficient P2-Na0.7Mn0.75Ni0.25O2- X Cathode by a Reductive NH4HF2Treatment for Highly Reversible Na-Ion Storage. ACS Appl. Energy Mater. 2021, 4, 8036–8044. [Google Scholar] [CrossRef]
- Yang, J.; Maughan, A.E.; Teeter, G.; Tremolet de Villers, B.J.; Bak, S.M.; Han, S.D. Structural Stabilization of P2-Type Sodium Iron Manganese Oxides by Electrochemically Inactive Mg Substitution: Insights of Redox Behavior and Voltage Decay. ChemSusChem 2020, 13, 5972–5982. [Google Scholar] [CrossRef]
- Choi, J.; Lee, S.Y.; Yoon, S.; Kim, K.H.; Kim, M.; Hong, S.H. The Role of Zr Doping in Stabilizing Li[Ni0.6Co0.2Mn0.2]O2 as a Cathode Material for Lithium-Ion Batteries. ChemSusChem 2019, 12, 2439–2446. [Google Scholar] [CrossRef]
- Gao, S.; Zhan, X.; Cheng, Y.T. Structural, Electrochemical and Li-Ion Transport Properties of Zr-Modified LiNi0.8Co0.1Mn0.1O2 Positive Electrode Materials for Li-Ion Batteries. J. Power Sources. 2019, 410, 45–52. [Google Scholar] [CrossRef]
- Li, Q.; Li, Z.; Wu, S.; Wang, Z.; Liu, X.; Li, W.; Li, N.; Wang, J.; Zhuang, W. Utilizing Diverse Functions of Zirconium to Enhance the Electrochemical Performance of Ni-Rich Layered Cathode Materials. ACS Appl. Energy Mater. 2020, 3, 11741–11751. [Google Scholar] [CrossRef]
- Yoon, C.S.; Choi, M.J.; Jun, D.W.; Zhang, Q.; Kaghazchi, P.; Kim, K.H.; Sun, Y.K. Cation Ordering of Zr-Doped LiNiO2 Cathode for Lithium-Ion Batteries. Chem. Mater. 2018, 30, 1808–1814. [Google Scholar] [CrossRef]
- Shugay, B.; Rakhymbay, L.; Konarov, A.; Myung, S.T.; Bakenov, Z. Enhanced Electrochemical Performance of Sodium Cathode Materials with Partial Substitution of Zr. Electrochem. Commun. 2023, 146, 107413. [Google Scholar] [CrossRef]
- Kasireddy, S.R.; Gangaja, B.; Nair, S.V.; Santhanagopalan, D. Mn4+ Rich Surface Enabled Elevated Temperature and Full-Cell Cycling Performance of LiMn2O4 Cathode Material. Electrochim. Acta 2017, 250, 359–367. [Google Scholar] [CrossRef]
- Döbelin, N.; Kleeberg, R. Profex: A Graphical User Interface for the Rietveld Refinement Program BGMN. J. Appl. Crystallogr. 2015, 48, 1573–1580. [Google Scholar] [CrossRef]
- Rong, X.; Gao, F.; Ding, F.; Lu, Y.; Yang, K.; Li, H.; Huang, X.; Chen, L.; Hu, Y.S. Triple Effects of Sn-Substitution on Na0.67Ni0.33Mn.0.67 O2. J. Mater. Sci. Technol. 2019, 35, 1250–1254. [Google Scholar] [CrossRef]
- Amine, K.; Tukamoto, H.; Yasuda, H.; Fujita, Y. A New Three-Volt Spinel Li1+xMn1.5Ni0.5O4 for Secondary Lithium Batteries. J. Electrochem. Soc. 1996, 143, 1607–1613. [Google Scholar] [CrossRef]
- Shaju, K.M.; Rao, S.G.V.; Chowdari, B.V.R. Performance of Layered Li(Ni1/3Co1/3Mn1/3)O2 as Cathode for Li-Ion Batteries. Electrochim. Acta. 2002, 48, 145–151. [Google Scholar] [CrossRef]
- Li, J.; Xiong, S.; Liu, Y.; Ju, Z.; Qian, Y. Uniform LiNi1/3Co1/3Mn1/3O2 Hollow Microspheres: Designed Synthesis, Topotactical Structural Transformation and Their Enhanced Electrochemical Performance. Nano Energy 2013, 2, 1249–1260. [Google Scholar] [CrossRef]
- Han, B.; Xu, S.; Zhao, S.; Lin, G.; Feng, Y.; Chen, L.; Ivey, D.G.; Wang, P.; Wei, W. Enhancing the Structural Stability of Ni-Rich Layered Oxide Cathodes with a Preformed Zr-Concentrated Defective Nanolayer. ACS Appl. Mater. Interfaces 2018, 10, 39599–39607. [Google Scholar] [CrossRef]
- Wan, G.; Peng, B.; Zhao, L.; Wang, F.; Yu, L.; Liu, R.; Zhang, G. Dual-strategy Modification on P2-Na0.67Ni0.33Mn0.67O2 Realizes Stable High-voltage Cathode and High Energy Density Full Cell for Sodium-ion Batteries. SusMat 2023, 3, 58–71. [Google Scholar] [CrossRef]
- Wu, X.; Guo, J.; Wang, D.; Zhong, G.; McDonald, M.J.; Yang, Y. P2-Type Na0.66Ni0.33-XZnxMn0.67O2 as New High-Voltage Cathode Materials for Sodium-Ion Batteries. J. Power Sources 2015, 281, 18–26. [Google Scholar] [CrossRef]
- Qiu, C.; He, G.; Shi, W.; Zou, M.; Liu, C. The Polarization Characteristics of Lithium-Ion Batteries under Cyclic Charge and Discharge. J. Solid State Electrochem. 2019, 23, 1887–1902. [Google Scholar] [CrossRef]
- Xia, B.; Ye, B.; Cao, J. Polarization Voltage Characterization of Lithium-Ion Batteries Based on a Lumped Diffusion Model and Joint Parameter Estimation Algorithm. Energies 2022, 15, 1150. [Google Scholar] [CrossRef]
- Paul, S. Materials and Electrochemistry: Present and Future Battery. J. Electrochem. Sci. Technol. 2016, 7, 115–131. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brahmanandan, S.; Nair, S.; Santhanagopalan, D. High-Performance Zr-Doped P3-Type Na0.67Ni0.33Mn0.67O2 Cathode for Na-Ion Battery Applications. Crystals 2023, 13, 1339. https://doi.org/10.3390/cryst13091339
Brahmanandan S, Nair S, Santhanagopalan D. High-Performance Zr-Doped P3-Type Na0.67Ni0.33Mn0.67O2 Cathode for Na-Ion Battery Applications. Crystals. 2023; 13(9):1339. https://doi.org/10.3390/cryst13091339
Chicago/Turabian StyleBrahmanandan, Sayoojyam, Shantikumar Nair, and Dhamodaran Santhanagopalan. 2023. "High-Performance Zr-Doped P3-Type Na0.67Ni0.33Mn0.67O2 Cathode for Na-Ion Battery Applications" Crystals 13, no. 9: 1339. https://doi.org/10.3390/cryst13091339
APA StyleBrahmanandan, S., Nair, S., & Santhanagopalan, D. (2023). High-Performance Zr-Doped P3-Type Na0.67Ni0.33Mn0.67O2 Cathode for Na-Ion Battery Applications. Crystals, 13(9), 1339. https://doi.org/10.3390/cryst13091339