The Influence of Design on Stress Concentration Reduction in Dental Implant Systems Using the Finite Element Method
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Stress Analysis
3.2. Strain Analysis
4. Conclusions
- -
- Model B of the Ti-6Al-4V implant, characterized by a 3.25 mm diameter, 3.80 mm abutment diameter, and 11.4° taper angle, exhibited minimal stress concentration.
- -
- In comparison to Model A, Model B demonstrated a decrease in von Mises stress values of over 60% under a biting force of 100 N, measuring 212.71 MPa.
- -
- By increasing the implant wall thickness from 0.15 mm to 0.40 mm in the region adjacent to the abutment, the stress levels, especially at the internal screw, were significantly reduced.
- -
- Optimizing the implant design, particularly by increasing the implant wall thickness from 0.15 mm to 0.40 mm in the region adjacent to the abutment, was found to be highly effective in mitigating the stress distribution, especially at the internal screw.
- -
- Under static loading, the critical loads, where no yielding or fracture occurred for the designed Model A and B, were found to be 147 N and 410 N, respectively.
- -
- In Model B design, elastic strain decreased by about 63%, enhancing practicality and aligning with real-world applications, as verified through FEA model convergence analysis.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Menacho-Mendoza, E.; Cedamanos-Cuenca, R.; Díaz-Suyo, A. Stress analysis and factor of safety in three dental implant systems by finite element analysis. Saudi Dent. J. 2022, 34, 579–584. [Google Scholar] [CrossRef] [PubMed]
- Geng, J.P.; Xu, W.; Tan, K.B.; Liu, G.R.; Geng, B.J.P.; Gehrke, S.A.; da Silva, U.T.; Del Fabbro, M.; Borie, E.; Orsi, I.A.; et al. Finite Element Analysis of an Osseointegrated Stepped Screw Dental Implant. J. Oral Implant. 2004, 30, 223–233. [Google Scholar] [CrossRef] [PubMed]
- Büyük, F.N.; Savran, E.; Karpat, F. Review on finite element analysis of dental implants. J. Dent. Implant. Res. 2022, 41, 50–63. [Google Scholar] [CrossRef]
- Tiossi, R.; Lin, L.; Conrad, H.J.; Rodrigues, R.C.; Heo, Y.C.; Mattos, M.d.G.C.d.; Fok, A.S.-L.; Ribeiro, R.F. A digital image correlation analysis on the influence of crown material in implant-supported prostheses on bone strain distribution. J. Prosthodont. Res. 2012, 56, 25–31. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Dong, F. Three-dimensional finite element stress analysis of uneven-threaded ti dental implant. Int. J. Clin. Exp. Med. 2017, 10, 307–315. [Google Scholar]
- Geramizadeh, M.; Katoozian, H.; Amid, R.; Kadkhodazadeh, M. Finite Element Analysis of Dental Implants with and without Microthreads under Static and Dynamic Loading. J. Autom. Inf. Sci. 2017, 27, 25–35. [Google Scholar] [CrossRef] [PubMed]
- Altıparmak, N.; Polat, S.; Onat, S. Finite element analysis of the biomechanical effects of titanium and Cfr-peek additively manufactured subperiosteal jaw implant (AMSJI) on maxilla. J. Stomatol. Oral Maxillofac. Surg. 2023, 124, 101290. [Google Scholar] [CrossRef]
- Kayabaşı, O.; Yüzbasıoğlu, E.; Erzincanlı, F. Static, dynamic and fatigue behaviors of dental implant using finite element method. Adv. Eng. Softw. 2006, 37, 649–658. [Google Scholar] [CrossRef]
- Farronato, D.; Manfredini, M.; Stevanello, A.; Campana, V.; Azzi, L.; Farronato, M. A Comparative 3D Finite Element Computational Study of Three Connections. Materials 2019, 12, 3135. [Google Scholar] [CrossRef]
- Topkaya, H.; Kaman, M.O. Effect Of Dental Implant Dimensions On Fatigue Behaviour: A Numerical Approach. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 2018, 23, 249–260. [Google Scholar] [CrossRef]
- Paracchini, L.; Barbieri, C.; Redaelli, M.; Di Croce, D.; Vincenzi, C.; Guarnieri, R. Finite Element Analysis of a New Dental Implant Design Optimized for the Desirable Stress Distribution in the Surrounding Bone Region. Prosthesis 2020, 2, 225–236. [Google Scholar] [CrossRef]
- Šarac, D.; Atanasovska, I.; Vulović, S.; Mitrović, N.; Tanasić, I. Numerical study of the effect of dental implant inclination. J. Serbian Soc. Comput. Mech. 2017, 11, 63–79. [Google Scholar] [CrossRef]
- Nokar, S.; Jalali, H.; Nozari, F.; Arshad, M. Finite Element Analysis of Stress in Bone and Abutment-Implant Interface under Static and Cyclic Loadings. Front. Dent. 2020, 17, 21. [Google Scholar] [CrossRef] [PubMed]
- Bandgar, V.; Kharsan, V.; Mirza, A.; Jagtiani, K.; Dhariwal, N.; Kore, R. Comparative evaluation of three abutment–implant interfaces on stress distribution in and around different implant systems: A finite element analysis. Contemp. Clin. Dent. 2019, 10, 590–594. [Google Scholar] [CrossRef]
- Wang, P.-S.; Tsai, M.-H.; Wu, Y.-L.; Chen, H.-S.; Lei, Y.-N.; Wu, A.Y.-J. Biomechanical Analysis of Titanium Dental Implants in the All-on-4 Treatment with Different Implant–Abutment Connections: A Three-Dimensional Finite Element Study. J. Funct. Biomater. 2023, 14, 515. [Google Scholar] [CrossRef]
- Darvish, D.; Khorramymehr, S.; Nikkhoo, M. Finite Element Analysis of the Effect of Dental Implants on Jaw Bone under Mechanical and Thermal Loading Conditions. Math. Probl. Eng. 2021, 2021, 9281961. [Google Scholar] [CrossRef]
- Tonin, B.S.; Fu, J.; He, Y.; Ye, N.; Chew, H.P.; Fok, A. The effect of abutment material stiffness on the mechanical behavior of dental implant assemblies: A 3D finite element study. J. Mech. Behav. Biomed. Mater. 2023, 142, 105847. [Google Scholar] [CrossRef]
- Sun, F.; Lv, L.-T.; Cheng, W.; Zhang, J.-L.; Ba, D.-C.; Song, G.-Q.; Lin, Z. Effect of Loading Angles and Implant Lengths on the Static and Fatigue Fractures of Dental Implants. Materials 2021, 14, 5542. [Google Scholar] [CrossRef]
- Xiong, Y.; Wang, W.; Gao, R.; Zhang, H.; Dong, L.; Qin, J.; Wang, B.; Jia, W.; Li, X. Fatigue behavior and osseointegration of porous Ti-6Al-4V scaffolds with dense core for dental application. Mater. Des. 2020, 195, 108994. [Google Scholar] [CrossRef]
- Satyanarayana, T.; Rai, R.; Subramanyam, E.; Illango, T.; Mutyala, V.; Akula, R. Finite element analysis of stress concentration between surface coated implants and non surface coated implants-An in vitro study. J. Clin. Exp. Dent. 2019, 11, e713–e720. [Google Scholar] [CrossRef]
- Available online: https://asm.matweb.com/search/SpecificMaterial.asp?bassnum=mtp641 (accessed on 9 October 2023).
- Desai, S.R.; Koulgikar, K.D.; Alqhtani, N.R.; Alqahtani, A.R.; Alqahtani, A.S.; Alenazi, A.; Heboyan, A.; Fernandes, G.V.O.; Mustafa, M. Three-Dimensional FEA Analysis of the Stress Distribution on Titanium and Graphene Frameworks Supported by 3 or 6-Implant Models. Biomimetics 2023, 8, 15. [Google Scholar] [CrossRef] [PubMed]
- ISO 14801:2016; Dentistry—Implants—Dynamic Loading Test for Endosseous Dental Implants. IOS: Geneva, Switzerland, 2016.
- ANSYS Meshing User’s Guide; ANSYS, Inc.: Canonsburg, PA, USA, 2022.
- Bayata, F.; Yildiz, C. The effects of design parameters on mechanical failure of Ti-6Al-4V implants using finite element analysis. Eng. Fail. Anal. 2020, 110, 104445. [Google Scholar] [CrossRef]
- Jeng, M.-D.; Lin, Y.-S.; Lin, C.-L. Biomechanical Evaluation of the Effects of Implant Neck Wall Thickness and Abutment Screw Size: A 3D Nonlinear Finite Element Analysis. Appl. Sci. 2020, 10, 3471. [Google Scholar] [CrossRef]
Material | Young’s Modulus (GPa) | Poisson’s Ratio | Yield Stress (MPa) |
---|---|---|---|
Ti-6Al-4V (ASTM Grade 5) (Alpha-Beta, Annealed condition) | 113.8 | 0.342 | 880 |
Model A | Model B | ||
---|---|---|---|
Nodes | Elements | Nodes | Elements |
55,026 | 31,210 | 55,194 | 31,654 |
Model A | Model B | |
---|---|---|
Maximum equivalent stress (MPa) | 596.22 | 212.71 |
Maximum equivalent elastic strain (mm/mm) | 0.0080867 | 0.0029482 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pala, E.; Ozdemir, I.; Grund, T.; Lampke, T. The Influence of Design on Stress Concentration Reduction in Dental Implant Systems Using the Finite Element Method. Crystals 2024, 14, 20. https://doi.org/10.3390/cryst14010020
Pala E, Ozdemir I, Grund T, Lampke T. The Influence of Design on Stress Concentration Reduction in Dental Implant Systems Using the Finite Element Method. Crystals. 2024; 14(1):20. https://doi.org/10.3390/cryst14010020
Chicago/Turabian StylePala, Eser, Ismail Ozdemir, Thomas Grund, and Thomas Lampke. 2024. "The Influence of Design on Stress Concentration Reduction in Dental Implant Systems Using the Finite Element Method" Crystals 14, no. 1: 20. https://doi.org/10.3390/cryst14010020
APA StylePala, E., Ozdemir, I., Grund, T., & Lampke, T. (2024). The Influence of Design on Stress Concentration Reduction in Dental Implant Systems Using the Finite Element Method. Crystals, 14(1), 20. https://doi.org/10.3390/cryst14010020