The Effect of Temperature on the Surface Energetic Properties of Carbon Fibers Using Inverse Gas Chromatography
Abstract
:1. Introduction
2. IGC Methods and Models
2.1. Classical Methods
2.2. Recent Progress
2.2.1. Molecular Models
- Kiselev results;
- Two-dimensional Van der Waals (VDW) equation;
- Two-dimensional Redlich–Kwong (R-K) equation;
- Geometric model based on the real form of molecules;
- Cylindrical model based on cylindrical form of molecules;
- Spherical model based on spherical form of molecules.
2.2.2. Hamieh Thermal Model
3. Experimental Section
3.1. Materials and Solvents
3.2. GC Conditions
3.3. Results
3.3.1. Dispersive Component of Surface Energy of Carbon Fibers
- The dispersive surface entropy , given by
- The extrapolated values at 0 K;
- The maximum temperature defined by .
3.3.2. Specific Variables of Adsorption and Lewis Acid–Base Constants
3.4. Enthalpic and Entropic Acid–Base Constants
3.5. Specific and Total Surface Energies of Carbon Fibers
3.6. Comparison with Other Results in the Literature
4. Conclusions
Supplementary Materials
Funding
Data Availability Statement
Conflicts of Interest
References
- Collins, M.N.; Culebras, M.; Ren, G. Chapter 8—The use of lignin as a precursor for carbon fiber–reinforced composites. In Micro and Nanolignin in Aqueous Dispersions and Polymers; Puglia, D., Santulli, C., Sarasini, F., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 237–250. ISBN 9780128237021. [Google Scholar] [CrossRef]
- Morgan, P. Carbon Fibers and Their Composites; CRC Press: Boca Raton, FL, USA, 2005; 1200p, ISBN 9780429116827. [Google Scholar] [CrossRef]
- Park, S.J. Carbon Fibers; Springer Series in Materials Science (SSMATERIALS, Volume 210); Springer: Dordrecht, The Netherlands, 2015; 330p. [Google Scholar] [CrossRef]
- Frank, E.; Steudle, L.M.; Ingildeev, D.; Spörl, J.M.; Buchmeiser, M.R. Carbon fibers: Precursor systems, processing, structure, and properties. Angew. Chem. Int. Ed. 2014, 53, 5262–5298. [Google Scholar] [CrossRef] [PubMed]
- Peijs, T.; Kirschbaum, R.; Jan Lemstra, P. Chapter 5: A critical review of carbon fiber and related products from an industrial perspective. Adv. Ind. Eng. Polym. Res. 2022, 5, 90–106. [Google Scholar] [CrossRef]
- Roberts, T. The Carbon Fiber Industry: Global Strategic Market Evaluation 2006–2010; Materials Technology Publications: Watford, UK, 2006; Volume 10, pp. 93–177. [Google Scholar]
- Red, C. Aerospace will continue to lead advanced composites market in 2006. Compos. Manuf. 2006, 7, 24–33. [Google Scholar]
- Papirer, E.; Brendlé, E.; Ozil, F.; Balard, H. Comparison of the surface properties of graphite, carbon black and fullerene samples, measured by inverse gas chromatography. Carbon 1999, 37, 1265–1274. [Google Scholar] [CrossRef]
- Chung, D.L. Carbon Fiber Composites; Butterworth-Heinemann: Boston, MA, USA, 1994; pp. 3–65. [Google Scholar]
- Donnet, J.B.; Bansal, R.C. Carbon Fibers, 2nd ed.; Marcel Dekker: New York, NY, USA, 1990; pp. 1–145. [Google Scholar]
- Friedlander, H.N.; Peebles, L.H., Jr.; Brandrup, J.; Kirby, J.R. On the chromophore of polyacrylonitrile. VI. Mechanism of color formation in polyacrylonitrile. Macromolecules 1968, 1, 79–86. [Google Scholar] [CrossRef]
- Huang, X. Fabrication and Properties of Carbon Fibers. Materials 2009, 2, 2369–2403. [Google Scholar] [CrossRef]
- Qiao, Z.; Ding, C. Recent progress in carbon fibers for boosting electrocatalytic energy conversion. Ionics 2022, 28, 5259–5273. [Google Scholar] [CrossRef]
- Schultz, J.; Lavielle, L.; Martin, C. The role of the interface in carbon fibre-epoxy composites. J. Adhes. 1987, 23, 45–60. [Google Scholar] [CrossRef]
- Schultz, J.; Lavielle, L.; Martin, C. Propriétés de surface des fibres de carbone déterminées par chromatographie gazeuse inverse. J. Chim. Phys. 1987, 84, 231. [Google Scholar] [CrossRef]
- Hamieh, T. Surface acid-base properties of carbon fibres. Adv. Powder Technol. 1997, 8, 279–289. [Google Scholar] [CrossRef]
- Le Vu, H.; Nguyen, S.H.; Dang, K.Q.; Pham, C.V.; Le, H.T. The Effect of Oxidation Temperature on Activating Commercial Viscose Rayon-Based Carbon Fibers to Make the Activated Carbon Fibers (ACFs). Mater. Sci. Forum 2020, 985, 171–176. [Google Scholar] [CrossRef]
- Liu, Y.; Gu, Y.; Wang, S.; Li, M. Optimization for testing conditions of inverse gas chromatography and surface energies of various carbon fiber bundles. Carbon Lett. 2023, 33, 909–920. [Google Scholar] [CrossRef]
- Pal, A.; Kondor, A.; Mitra, S.; Thua, K.; Harish, S.; Saha, B.B. On surface energy and acid–base properties of highly porous parent and surface treated activated carbons using inverse gas chromatography. J. Ind. Eng. Chem. 2019, 69, 432–443. [Google Scholar] [CrossRef]
- Hamieh, T. Study of the temperature effect on the surface area of model organic molecules, the dispersive surface energy and the surface properties of solids by inverse gas chromatography. J. Chromatogr. A 2020, 1627, 461372. [Google Scholar] [CrossRef] [PubMed]
- Hamieh, T.; Ahmad, A.A.; Roques-Carmes, T.; Toufaily, J. New approach to determine the surface and interface thermodynamic properties of H-β-zeolite/rhodium catalysts by inverse gas chromatography at infinite dilution. Sci. Rep. 2020, 10, 20894. [Google Scholar] [CrossRef] [PubMed]
- Hamieh, T. New methodology to study the dispersive component of the surface energy and acid–base properties of silica particles by inverse gas chromatography at infinite dilution. J. Chromatogr. Sci. 2022, 60, 126–142. [Google Scholar] [CrossRef]
- Hamieh, T. New Physicochemical Methodology for the Determination of the Surface Thermodynamic Properties of Solid Particles. AppliedChem 2023, 3, 229–255. [Google Scholar] [CrossRef]
- Hamieh, T.; Schultz, J. New approach to characterise physicochemical properties of solid substrates by inverse gas chromatography at infinite dilution. I. Some new methods to determine the surface areas of some molecules adsorbed on solid surfaces. J. Chromatogr. A 2002, 969, 17–47. [Google Scholar] [CrossRef]
- Sawyer, D.T.; Brookman, D.J. Thermodynamically based gas chromatographic retention index for organic molecules using salt-modified aluminas and porous silica beads. Anal. Chem. 1968, 40, 1847–1850. [Google Scholar] [CrossRef]
- Saint-Flour, C.; Papirer, E. Gas-solid chromatography. A method of measuring surface free energy characteristics of short carbon fibers. 1. Through adsorption isotherms. Ind. Eng. Chem. Prod. Res. Dev. 1982, 21, 337–341. [Google Scholar] [CrossRef]
- Saint-Flour, C.; Papirer, E. Gas-solid chromatography: Method of measuring surface free energy characteristics of short fibers. 2. Through retention volumes measured near zero surface coverage. Ind. Eng. Chem. Prod. Res. Dev. 1982, 21, 666–669. [Google Scholar] [CrossRef]
- Donnet, J.-B.; Park, S.; Balard, H. Evaluation of specific interactions of solid surfaces by inverse gas chromatography. Chromatographia 1991, 31, 434–440. [Google Scholar] [CrossRef]
- Chehimi, M.M.; Abel, M.-L.; Perruchot, C.; Delamar, M.; Lascelles, S.F.; Armes, S.P. The determination of the surface energy of conducting polymers by inverse gas chromatography at infinite dilution. Synth. Met. 1999, 104, 51–59. [Google Scholar] [CrossRef]
- Chehimi, M.M.; Pigois-Landureau, E. Determination of acid–base properties of solid materials by inverse gas chromatography at infinite dilution. A novel empirical method based on the dispersive contribution to the heat of vaporization of probes. J. Mater. Chem. 1994, 4, 741–745. [Google Scholar] [CrossRef]
- Brendlé, E.; Papirer, E. A new topological index for molecular probes used in inverse gas chromatography for the surface nanorugosity evaluation, 2. Application for the Evaluation of the Solid Surface Specific Interaction Potential. J. Colloid Interface Sci. 1997, 194, 217–224. [Google Scholar] [CrossRef]
- Brendlé, E.; Papirer, E. A new topological index for molecular probes used in inverse gas chromatography for the surface nanorugosity evaluation, 1. Method of Evaluation. J. Colloid Interface Sci. 1997, 194, 207–216. [Google Scholar] [CrossRef]
- Gutmann, V. The Donor-acceptor Approach to Molecular Interactions; Plenum: New York, NY, USA, 1978. [Google Scholar]
- Dorris, G.M.; Gray, D.G. Adsorption of n-alkanes at zero surface coverage on cellulose paper and wood fibers. J. Colloid Interface Sci. 1980, 77, 353–362. [Google Scholar] [CrossRef]
- Fowkes, F.M. Surface and Interfacial Aspects of Biomedical Polymers. Andrade, J.D., Ed.; Plenum Press: New York, NY, USA, 1985; Volume I, pp. 337–372. [Google Scholar]
- Van Oss, C.J.; Good, R.J.; Chaudhury, M.K. Additive and nonadditive surface tension components and the interpretation of contact angles. Langmuir 1988, 4, 884. [Google Scholar] [CrossRef]
- RMenzel; Bismarck, A.; Shaffer, M.S.P. Deconvolution of the structural and chemical surface properties of carbon nanotubes by inverse gas chromatography. Carbon 2012, 50, 3416–3421. [Google Scholar] [CrossRef]
Untreated Carbon Fibers (a) | ||||
Molecular Model | (mJ/m2) | (mJ m−2 K−1) | (mJ/m2) | (K) |
Kiselev | = −0.13T + 88.0 | −0.13 | 88.0 | 702 |
Spherical | = −0.53T + 307.5 | −0.52 | 307.5 | 586 |
Geometric | = −0.07T + 55.3 | −0.07 | 55.3 | 848 |
VDW | = −0.14T + 92.7 | −0.14 | 92.7 | 686 |
Redlich–Kwong | = −0.22T + 152.5 | −0.22 | 152.5 | 684 |
Cylindrical | = −0.11T + 80.6 | −0.11 | 80.6 | 739 |
Hamieh a(T)/PTFE | = −0.32T + 174.7 | −0.32 | 174.7 | 544 |
Dorris–Gray | = −0.16T + 104.0 | −0.16 | 104.0 | 655 |
Hamieh–Gray | = −0.56T + 272.5 | −0.56 | 272.5 | 490 |
Hamieh a(T)/PE | = −0.29T + 148.2 | −0.29 | 148.2 | 503 |
Global average | = −0.26T + 151.2 | −0.26 | 151.2 | 590 |
Oxidized Carbon Fibers (b) | ||||
Molecular Model | (mJ/m2) | (mJ m−2 K−1) | (mJ/m2) | (K) |
Kiselev | = −0.24T + 123.7 | −0.24 | 123.7 | 517 |
Spherical | = −0.52T + 307.5 | −0.52 | 307.5 | 586 |
Geometric | = −0.13T + 75.8 | −0.13 | 75.8 | 576 |
VDW | = −0.26T + 132.9 | −0.26 | 132.9 | 505 |
Redlich–Kwong | = −0.43T + 218.0 | −0.43 | 218.0 | 504 |
Cylindrical | = −0.21T + 111.3 | −0.21 | 111.3 | 536 |
Hamieh a(T)/PTFE | = −0.48T + 223.5 | −0.48 | 223.5 | 468 |
Dorris–Gray | = −0.16T + 102.7 | −0.16 | 102.7 | 641 |
Hamieh–Gray | = −0.61T + 287.6 | −0.61 | 287.6 | 470 |
Hamieh a(T)/PE | = −0.41T + 183.6 | −0.41 | 183.6 | 449 |
Global average | = −0.36T + 182.5 | −0.36 | 182.5 | 511 |
Untreated Carbon Fibers (a) | ||||||||
Probes | CCl4 | CH2Cl2 | CHCl3 | Benzene | Ether | THF | EA | Acetone |
Kiselev | 1.075 | 1.200 | 6.011 | 0.765 | 12.135 | 12.456 | 11.321 | 16.459 |
Spherical | 4.020 | 6.751 | 11.991 | 12.195 | 9.371 | 20.915 | 18.464 | 22.925 |
Geometric | 9.512 | 14.044 | 41.587 | 6.642 | 5.827 | 13.830 | 12.562 | 10.470 |
VDW | 2.523 | 4.995 | 19.769 | 12.685 | 8.460 | 20.658 | 14.704 | 18.342 |
R-K | 2.601 | 5.081 | 19.691 | 12.494 | 8.370 | 20.331 | 14.483 | 18.015 |
Cylindrical | 1.541 | 16.596 | 38.802 | −3.287 | 4.682 | 9.464 | 11.266 | 9.969 |
Hamieh model | 1.475 | 1.900 | 6.011 | 1.100 | 13.852 | 13.093 | 18.923 | 13.540 |
Topological index | 7.292 | 17.167 | 54.714 | 5.528 | 9.132 | 18.524 | 9.042 | 13.164 |
Deformation polarizability | 9.504 | 0.707 | 47.722 | 9.133 | 11.308 | 22.853 | 10.797 | 15.845 |
Vapor pressure | −3.789 | 2.297 | 44.039 | 4.700 | 6.777 | 14.770 | 4.576 | 2.082 |
Boiling point | −4.167 | 0.110 | 41.913 | 4.990 | 9.162 | 13.796 | 4.262 | 4.487 |
DHvap | −3.839 | 2.382 | 42.347 | 4.584 | 7.495 | 12.540 | 2.302 | 2.438 |
DHvap(T) | 4.069 | 7.408 | 53.671 | 9.034 | 20.773 | 22.216 | 7.813 | −4.978 |
Average values | 2.447 | 6.203 | 32.944 | 6.197 | 9.796 | 16.573 | 10.809 | 10.981 |
Oxidized Carbon Fibers (b) | ||||||||
Probes | CCl4 | CH2Cl2 | CHCl3 | Benzene | Ether | THF | EA | Acetone |
Kiselev | 4.200 | 6.958 | −18.895 | 3.170 | 16.203 | 20.300 | 16.512 | 28.623 |
Spherical | 7.350 | 13.845 | −11.197 | 16.232 | 13.477 | 29.914 | 24.441 | 35.723 |
Geometric | 14.586 | 20.524 | 15.981 | 10.199 | 8.598 | 21.950 | 18.548 | 22.065 |
VDW | 6.045 | 11.728 | −5.159 | 17.185 | 12.309 | 29.983 | 20.583 | 31.148 |
R-K | 6.053 | 11.843 | −4.140 | 16.892 | 12.292 | 29.521 | 20.294 | 30.633 |
Cylindrical | 4.982 | 23.658 | 12.922 | −1.537 | 7.551 | 16.915 | 16.682 | 21.332 |
Hamieh model | 4.782 | 2.937 | 11.416 | 2.931 | 17.063 | 20.099 | 30.039 | 24.811 |
Topological index | 13.884 | 25.326 | 29.357 | 9.583 | 12.066 | 28.413 | 14.729 | 27.207 |
Deformation polarizability | 16.481 | 4.283 | 20.425 | 14.201 | 14.861 | 33.962 | 18.262 | 31.156 |
Vapor pressure | −0.393 | 6.459 | 16.558 | 8.635 | 9.739 | 23.202 | 11.251 | 13.724 |
Boiling point | −0.789 | 11.799 | 12.989 | 8.864 | 12.220 | 22.385 | 9.874 | 16.157 |
DHvap | −0.338 | 6.433 | 13.555 | 8.384 | 9.992 | 20.772 | 7.396 | 13.503 |
DHvap(T) | 7.717 | 11.939 | 24.057 | 13.722 | 22.735 | 29.753 | 14.091 | 6.858 |
Average values | 6.505 | 12.133 | 9.067 | 9.882 | 13.008 | 25.167 | 17.131 | 23.303 |
Models or Methods | KA | KD | KD/KA | R2 | 10−3ωA | 10−3ωD | ωD/ωA | R2 |
---|---|---|---|---|---|---|---|---|
Kiselev | 0.14 | 0.29 | 2.2 | 0.9705 | 0.31 | 0.41 | 1.3 | 0.9876 |
Spherical | 0.10 | 2.53 | 25.3 | 0.0475 | 0.26 | 4.40 | 17.0 | 0.0893 |
Geometric | 0.05 | 1.99 | 43.7 | 0.0366 | 0.17 | 2.94 | 17.7 | 0.1959 |
Van der Waals | 0.09 | 2.49 | 26.7 | 0.0375 | 0.27 | 4.36 | 16.4 | 0.0847 |
Redlich–Kwong | 0.09 | 2.46 | 27.0 | 0.0371 | 0.24 | 4.04 | 16.5 | 0.0844 |
Cylindrical | 0.12 | −0.16 | −1.4 | 0.3736 | 0.30 | −0.47 | −1.6 | 0.4863 |
Hamieh model | 0.14 | 0.44 | 3.1 | 0.9252 | 0.17 | 0.75 | 4.5 | 0.9309 |
Topological index | 0.11 | 1.66 | 15.1 | 0.2264 | 0.28 | 1.09 | 3.8 | 0.6131 |
Deformation polarizability | 0.13 | 2.21 | 17.3 | 0.1226 | 0.30 | 1.69 | 5.6 | 0.4612 |
Vapor pressure | 0.12 | 0.69 | 5.9 | 0.2498 | 0.24 | 1.15 | 4.7 | 0.4934 |
Boiling point | 0.11 | 0.76 | 7.1 | 0.2089 | 0.29 | 0.06 | 0.2 | 0.5289 |
ΔHvap | 0.09 | 0.70 | 7.5 | 0.1873 | 0.27 | 0.09 | 0.3 | 0.5091 |
ΔHvap(T) | 0.14 | 1.89 | 13.4 | 0.1419 | 0.50 | 2.43 | 4.8 | 0.4308 |
Average values | 0.14 | 1.28 | 8.9 | 0.3193 | 0.30 | 1.64 | 5.5 | 0.5303 |
Models or Methods | KA | KD | KD/KA | R2 | 10−3ωA | 10−3ωD | ωD/ωA | R2 |
---|---|---|---|---|---|---|---|---|
Kiselev | 0.20 | 0.78 | 3.9 | 0.7242 | 0.34 | 1.40 | 4.1 | 0.8568 |
Spherical | 0.16 | 3.34 | 21.2 | 0.0643 | 0.30 | 5.97 | 20.1 | 0.0689 |
Geometric | 0.09 | 2.78 | 29.7 | 0.06 | 0.20 | 4.01 | 20.1 | 0.1061 |
Van der Waals | 0.15 | 3.37 | 22.5 | 0.0515 | 0.33 | 5.77 | 17.5 | 0.0671 |
Redlich–Kwong | 0.15 | 0.15 | 1.0 | 0.0516 | 0.30 | 5.33 | 17.6 | 0.0673 |
Cylindrical | 0.18 | 0.22 | 1.2 | 0.7422 | 0.38 | −0.73 | −1.9 | 0.5582 |
Hamieh model | 0.19 | 1.06 | 5.4 | 0.98 | 0.20 | 2.52 | 12.6 | 0.9244 |
Topological index | 0.17 | 2.60 | 15.5 | 0.1805 | 0.35 | 2.68 | 7.8 | 0.3816 |
Deformation polarizability | 0.19 | 3.31 | 17.4 | 0.1127 | 0.38 | 3.75 | 9.9 | 0.2279 |
Vapor pressure | 0.17 | 1.43 | 8.3 | 0.2066 | 0.37 | 0.69 | 1.9 | 0.4483 |
Boiling point | 0.16 | 1.54 | 9.5 | 0.1829 | 0.34 | 1.06 | 3.2 | 0.3909 |
ΔHvap | 0.15 | 1.40 | 9.5 | 0.1691 | 0.31 | 0.86 | 2.7 | 0.3832 |
ΔHvap(T) | 0.18 | 2.79 | 15.8 | 0.106 | 0.46 | 4.52 | 9.8 | 0.2163 |
Average values | 0.20 | 2.00 | 10.2 | 0.2506 | 0.35 | 2.70 | 7.8 | 0.3182 |
Solid Surface | KA | KD | KD/KA | 10−3ωA | 10−3ωD | ωΔ/ωA |
---|---|---|---|---|---|---|
Untreated carbon fibers (a) | 0.14 | 0.44 | 3.1 | 0.17 | 0.75 | 4.5 |
Oxidized carbon fibers (b) | 0.19 | 1.06 | 5.4 | 0.20 | 2.52 | 12.6 |
Ratio fibers (b)/fibers (a) | 1.36 | 2.41 | 1.74 | 1.18 | 3.36 | 2.80 |
Untreated Carbon Fibers | Oxidized Carbon Fibers | |||
---|---|---|---|---|
T(K) | CH2Cl2 | Ethyl Acetate | CH2Cl2 | Ethyl Acetate |
313.15 | 1.274 | 10.622 | 1.274 | 10.622 |
323.15 | 1.254 | 10.246 | 1.254 | 10.246 |
333.15 | 1.234 | 9.881 | 1.234 | 9.881 |
343.15 | 1.214 | 9.489 | 1.214 | 9.489 |
353.15 | 1.194 | 9.094 | 1.194 | 9.094 |
363.15 | 1.174 | 8.746 | 1.174 | 8.746 |
373.15 | 1.154 | 8.411 | 1.154 | 8.411 |
In mJ/m2 | Untreated Carbon Fibers | Oxidized Carbon Fibers | ||||
---|---|---|---|---|---|---|
T(K) | ||||||
313.15 | 0.88 | 43.88 | 12.45 | 1.02 | 79.70 | 18.06 |
323.15 | 0.85 | 40.75 | 11.79 | 0.95 | 74.19 | 16.77 |
333.15 | 0.82 | 37.82 | 11.17 | 0.88 | 68.96 | 15.54 |
343.15 | 0.80 | 34.81 | 10.53 | 0.81 | 63.83 | 14.35 |
353.15 | 0.77 | 31.91 | 9.91 | 0.74 | 58.79 | 13.20 |
363.15 | 0.74 | 29.45 | 9.35 | 0.68 | 53.86 | 12.08 |
373.15 | 0.72 | 27.19 | 8.82 | 0.62 | 49.06 | 11.00 |
In mJ/m2 | Thermal Model 1 | |||
T(K) | ||||
313.15 | 74.9 | 87.3 | 74.3 | 92.3 |
323.15 | 71.0 | 82.8 | 69.1 | 85.8 |
333.15 | 67.6 | 78.7 | 64.1 | 79.7 |
343.15 | 63.8 | 74.3 | 59.3 | 73.7 |
353.15 | 60.2 | 70.2 | 54.6 | 67.8 |
363.15 | 57.9 | 67.2 | 50.0 | 62.1 |
373.15 | 56.1 | 64.9 | 45.5 | 56.5 |
In mJ/m2 | Thermal Model 2 | |||
T(K) | ||||
313.15 | 56.3 | 68.8 | 55.9 | 74.0 |
323.15 | 53.0 | 64.8 | 51.5 | 68.3 |
333.15 | 49.9 | 61.1 | 47.4 | 62.9 |
343.15 | 46.6 | 57.2 | 43.3 | 57.6 |
353.15 | 43.5 | 53.4 | 39.2 | 52.4 |
363.15 | 41.1 | 50.4 | 35.2 | 47.3 |
373.15 | 38.9 | 47.7 | 31.3 | 42.3 |
Carbon Fiber | % C | % O | % N | O/C |
---|---|---|---|---|
Untreated | 93.12 | 5.10 | 1.78 | 0.055 |
Oxidized | 87.31 | 11.07 | 1.62 | 0.127 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hamieh, T. The Effect of Temperature on the Surface Energetic Properties of Carbon Fibers Using Inverse Gas Chromatography. Crystals 2024, 14, 28. https://doi.org/10.3390/cryst14010028
Hamieh T. The Effect of Temperature on the Surface Energetic Properties of Carbon Fibers Using Inverse Gas Chromatography. Crystals. 2024; 14(1):28. https://doi.org/10.3390/cryst14010028
Chicago/Turabian StyleHamieh, Tayssir. 2024. "The Effect of Temperature on the Surface Energetic Properties of Carbon Fibers Using Inverse Gas Chromatography" Crystals 14, no. 1: 28. https://doi.org/10.3390/cryst14010028
APA StyleHamieh, T. (2024). The Effect of Temperature on the Surface Energetic Properties of Carbon Fibers Using Inverse Gas Chromatography. Crystals, 14(1), 28. https://doi.org/10.3390/cryst14010028