Comprehensive Recovery of Point Defect Displacement Field Function in Crystals by Computer X-ray Diffraction Microtomography
Abstract
:1. Introduction
2. The Recovery Issue in the XRDMT Results
2.1. Semi-Kinematical Diffraction Optics Approach
2.2. The Diffraction Optics Rigorous Approach, the Takagi–Taupin Equations in the Finite Differences
3. Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
- –
- Assign the starting vector .
- –
- Evaluate the differential according to the (N-M) algorithm activated, 1 ≤ k ≤ K.
- –
- Evaluate the FOM value Ɽk (3) for each k.
- –
- Terminate processing the χ2-target function which becomes less than 10−10 and or the FOM-value becomes less than 10−6 for k = K]
Appendix B
- (i)
- the reflection parameter α > 0 was selected as 1.0.
- (ii)
- the compression factor β > 0 was selected as 0.5.
- (iii)
- the stretching factor γ > 0 was selected as 2.0.
- Preparing step: select (n + 1)-points of vector i = (pi(1), pi(2), …, pi(n)), i = 1, 2, …, n + 1, to form a simplex of the n-dimensional space. At these vectors, the values of the -function are calculated: 1 = , 2 = , …, n + 1 = .
- Sort step: from the simple vertices, one chooses three vectors: h with the largest of the selected values of the function h, g with the next largest value g (i) and l with the smallest value of the function l.
- Find the gravity center of all the vectors, with the exception of h: c=.
- Reflection step: one reflects the vector h in relation to xc with the coefficient α and gets the vector r calculating the function r = (r). The new vector p-coordinates are calculated using the formula: r = (1 + α) c − α h.
- Next step: one looks at how much one has managed to reduce the -function looking r –value in the rows h, g, l.If r < l. If the direction is right, one can increase the step, and one can do the “stretching factor” step. The next vector will be e = (1 − γ) c + γ r and e = (e). If e < r, one expands the simplex to this vector: assign h the value of e and go to step 9.If r < e, then one moved too far: assign h the value of r and go to step 9.If l < r < g, then the choice of a vector is not bad (the new one is better than the previous two). One assigns h the value of r and goes to step 9.If g < r < h, then swap the values h and r. One also needs to swap the values r and h, and then one goes to step 6.If h < r, then, one goes to step 6.
- Compression step: one chooses the vector s = β h + (1 − β) c and calculates the value (s).
- If s < h, one assigns {h} as {s} and goes to step 9.
- If s > h, the initial {s}-point set was chosen to be the best. One does the “global simplex compression” for the vector with the smallest value l: i ← l + (i − l)/2, i ≠ l.
- Last step: a convergence verification. One estimates the variance of a set of vectors . The aim is to check the mutual vicinity of the simplex vertices that are assumed to be vector vicinity about the desired value. If the accuracy is not good enough, one continues further processing, beginning from step 2.
References
- Bowen, D.K.; Tanner, B.K. High Resolution X-ray Diffractometry and Topography; Taylor & Francis: New York, NY, USA, 1998. [Google Scholar]
- Darowski, N.; Pietsch, U.; Zhuang, Y.; Zerlauth, S.; Bauer, G.; Lübbert, D.; Baumbach, T. In-plane strain and strain relaxation in laterally patterned periodic arrays of Si/SiGe quantum wires and dot arrays. Appl. Phys. Lett. 1998, 73, 806–808. [Google Scholar] [CrossRef]
- Pavlov, K.M.; Punegov, V.I. Statistical dynamical theory of X-ray diffraction in the Bragg case: Application to triple-crystal diffractometry. Acta Crystallogr. A 2000, 56, 227–234. [Google Scholar] [CrossRef] [PubMed]
- Authier, A. Dynamical Theory of X-ray Diffraction; Oxford University Press: New York, NY, USA, 2001. [Google Scholar]
- Benediktovitch, A.; Feranchuk, I.; Ulyanenkov, A. Theoretical Concepts of X-ray Nanoscale Analysis; Springer: Heidelberg, Germany, 2013. [Google Scholar]
- Ludwig, W.; Cloetens, P.; Härtwig, J.; Baruchel, J.; Hamelin, B.; Bastie, P. Three-dimensional imaging of crystal defects by ‘topo-tomography. J. Appl. Crystallogr. 2001, 34, 602–607. [Google Scholar] [CrossRef]
- Danilewsky, A.N.; Wittge, J.; Croell, A.; Allen, D.; McNally, P.; Vagovič, P.; dos Santos Rolo, T.; Li, Z.; Baumbach, T.; Gorostegui-Colinas, E.; et al. Dislocation dynamics and slip band formation in silicon: In-situ study by X-ray diffraction imaging. J. Crystallogr. Growth 2011, 318, 1157–1163. [Google Scholar] [CrossRef]
- Hänschke, D.; Danilewsky, A.; Helfen, L.; Hamann, E.; Baumbach, T. Correlated three-dimensional imaging of dislocations: Insights into the onset of thermal slip in semiconductor wafers. Phys. Rev. Lett. 2017, 119, 215504. [Google Scholar] [CrossRef] [PubMed]
- Chukhovskii, F.N.; Konarev, P.V.; Volkov, V.V. Towards a solution of the inverse X-ray diffraction tomography challenge: Theory and iterative algorithm for recovering the 3D displacement field function of Coulomb-type point defects in a crystal. Acta Crystallogr. A 2020, 76, 16–25. [Google Scholar] [CrossRef] [PubMed]
- Chukhovskii, F.N.; Konarev, P.V.; Volkov, V.V. Denoising of the Poisson-noise statistics 2D image patterns in the computer X-ray diffraction tomography. Crystals 2023, 13, 561. [Google Scholar] [CrossRef]
- Yang, W.; Hong, J.-Y.; Kim, J.-Y.; Paik, S.; Lee, S.H.; Park, J.-S.; Lee, G.; Kim, B.M.; Jung, Y.-J. A novel singular value decomposition- based denoising method in 4-dimensional computed tomography of the brain in stroke patients with statistical evaluation. Sensors 2020, 20, 3063. [Google Scholar] [CrossRef] [PubMed]
- Hendriksen, A.A.; Bührer, M.; Leone, L.; Merlini, M.; Vigano, N.; Pelt, D.M.; Marone, F.; di Michiel, M.; Batenburg, K.J. Deep denoising for multi-dimensional synchrotron X-ray tomography without high-quality reference data. Sci. Rep. 2021, 11, 11895. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Schumacher, T. Improved denoising of structural vibration data employing bilateral filtering. Sensors 2020, 20, 1423. [Google Scholar] [CrossRef] [PubMed]
- Hamming, R.W. Numerical Methods for Scientists and Engineers; Mc Graw-Hill: New York, NY, USA, 1961. [Google Scholar]
- Grigorev, V.A.; Konarev, P.V.; Chukhovskii, F.N.; Volkov, V.V. X-ray, Synchrotron and Neutron Techniques. J. Surf. Investig. 2023, in press. [Google Scholar]
- Devroye, L. The computer generation of Poisson random variables. Computing 1981, 26, 197–207. [Google Scholar] [CrossRef]
- Levenberg, K. A Method for the Solution of Certain Non-Linear Problems in Least Squares. Q. Appl. Math. 1944, 2, 164–168. [Google Scholar] [CrossRef]
- Marquardt, D. An Algorithm for Least-Squares Estimation of Nonlinear Parameters. SIAM J. Appl. Math. 1963, 11, 431–441. [Google Scholar] [CrossRef]
- Kirkpatrick, S.; Gelatt, C.D.; Vecchi, M.P. Optimization by Simulated Annealing. Science 1983, 220, 671–680. [Google Scholar] [CrossRef] [PubMed]
- Takagi, S. Dynamical theory of diffraction applicable to crystals with any kind of small distortion. Acta Crystallogr. 1962, 15, 1311–1312. [Google Scholar] [CrossRef]
- Taupin, D. Théorie dynamique dela ladiffraction des rayons X par les cristaux déformés. Bull. Soc. Fr. Miner. 1964, 87, 469–511. [Google Scholar] [CrossRef]
- Nelder, J.A.; Mead, R.A. Simplex Method for Function Minimization. Comput. J. 1965, 7, 308–313. [Google Scholar] [CrossRef]
- Franke, D.; Kikhney, A.G.; Svergun, D. Automated acquisition and analysis of small angle X-ray scattering data. Nucl. Instrum. Methods Phys. Res. A 2012, 689, 52–59. [Google Scholar] [CrossRef]
%-Noise Level | 2D IP Frame Quantity | lucky Trials/Total Trials | |||
---|---|---|---|---|---|
1 | 3 | (1.46; 0.50; 1.83) | 1.4 | 0.071 | 10/12 |
1 | 11 | (1.48; 0.50; 1.82) | 1.2 | 0.070 | 10/12 |
1 | 23 | (1.52; 0.50; 1.81) | 1.1 | 0.066 | 11/12 |
1 | 31 | (1.49; 0.50; 1.81) | 0.9 | 0.051 | 11/12 |
3 | 3 | (1.55; 0.50; 1.81) | 1.7 | 0.097 | 9/12 |
3 | 11 | (1.47; 0.50; 1.81) | 1.5 | 0.092 | 9/12 |
3 | 23 | (1.52; 0.50; 1.81) | 1.4 | 0.089 | 9/12 |
3 | 31 | (1.49; 0.50; 1.81) | 1.1 | 0.084 | 10/12 |
%-Noise | Average Frames, n | K | Lucky Trials/ Total Trials | ||
---|---|---|---|---|---|
0 | 1 | {1.50, 0.50, 1.80} | 2.21 × 10−7 | 6.935 × 10−6 | 15/15 |
5 | 1 | {1.50, 0.50, 1.80} | 1.42 × 10−1 | 1.408 × 10−2 | 12/15 |
5 | 102 | {1.50, 0.50, 1.80} | 4.67 × 10−2 | 2.307 × 10−3 | 12/15 |
5 | 104 | {1.50, 0.50, 1.80} | 7.25 × 10−4 | 1.082 × 10−3 | 13/15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chukhovskii, F.N.; Konarev, P.V.; Volkov, V.V. Comprehensive Recovery of Point Defect Displacement Field Function in Crystals by Computer X-ray Diffraction Microtomography. Crystals 2024, 14, 29. https://doi.org/10.3390/cryst14010029
Chukhovskii FN, Konarev PV, Volkov VV. Comprehensive Recovery of Point Defect Displacement Field Function in Crystals by Computer X-ray Diffraction Microtomography. Crystals. 2024; 14(1):29. https://doi.org/10.3390/cryst14010029
Chicago/Turabian StyleChukhovskii, Felix N., Petr V. Konarev, and Vladimir V. Volkov. 2024. "Comprehensive Recovery of Point Defect Displacement Field Function in Crystals by Computer X-ray Diffraction Microtomography" Crystals 14, no. 1: 29. https://doi.org/10.3390/cryst14010029
APA StyleChukhovskii, F. N., Konarev, P. V., & Volkov, V. V. (2024). Comprehensive Recovery of Point Defect Displacement Field Function in Crystals by Computer X-ray Diffraction Microtomography. Crystals, 14(1), 29. https://doi.org/10.3390/cryst14010029