Mammalian Cell Cytotoxicity, Antibacterial Activity and the Properties of Methylenebis(Hydroxybenzoic Acid) and Its Related Zinc(II) Complex
Abstract
:1. Introduction
2. Experimental
2.1. Materials and Methods
2.2. Sample Collection (MHB and Zn–MHB)
2.3. Pharmacological Screening of MHB
2.3.1. Antibacterial Activity
2.3.2. Cytotoxic Assessment
3. Results and Discussion
3.1. Sample Characterization
3.1.1. Structural Determination of the Ligand, MHB
3.1.2. Structural Determination of the Complex, Zn–MHB
3.1.3. Powder XRD Studies
3.1.4. Optical Properties
3.1.5. Antibacterial Investigation
3.1.6. Cytotoxic Assay
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kahl, L. Ueber Condensationsproducte von Aldehyden mit Phenolen und Phenolcarbonsäuren und davon derivirende Diphenylmethanfarbstoffe. Ber. Dtsch. Chem. Ges. 1898, 31, 143–151. [Google Scholar] [CrossRef]
- Takashi, H.; Takaaki, H.; Hyozo, S.; Alan, P.M.; Kaipenchery, A.K.; Simon, G.B.; Kata, M.M.; Tatjana, S.; Nazar, S.A.E.; Hong-Sik, H.; et al. Molecular design of lipophilic disalicylic acid compounds with varying spacers for selective lead(II) extraction. Talanta 2000, 52, 385–396. [Google Scholar]
- Clemmensen, E.; Heitman, A.H.C. Methylenedisalicylic acid and its reaction with bromine and iodine. J. Am. Chem. Soc. 1911, 33, 733–745. [Google Scholar] [CrossRef]
- Sivapullaiah, P.V.; Soundararajan, S. Methylene di salicylates of rare-earths. J. Indian Inst. Sci. 1976, 58, 289–293. [Google Scholar]
- Patel, R.P.; Karampurwala, A.M.; Shah, J.R. Physicochemical studies on square planar Co2+, Ni2+ and Cu2+ chelate polymers. Macromol. Mater. Eng. 1980, 87, 87–94. [Google Scholar]
- Kaltenberg, J.; Plum, J.L.; Ober-Blobaum, J.L.; Honscheid, A.; Rink, L.; Haase, H. Zinc signals promote IL-2-dependent proliferation of T cells. Eur. J. Immunol. 2010, 40, 1496–1503. [Google Scholar] [CrossRef]
- Kim, A.M.; Bernhardt, M.L.; Kong, B.Y.; Ahn, R.W.; Vogt, S.; Woodruf, T.K.; O’Halloran, T.V. Zinc sparks are triggered by fertilization and facilitate cell cycle resumption in mammalian eggs. ACS Chem. Biol. 2011, 6, 716–723. [Google Scholar] [CrossRef]
- Xu, Y.; Luo, F.; Zheng, J.M. Syntheses, structures, and magnetic properties of a series of het-erotri-, tetra- and pentanuclear LnIII–CoII compounds. Polymers 2019, 11, 196. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.M.; Zhang, N.N.; Liu, C.S.; Jiang, Z.H.; Wang, X.D.; Du, M.A. Mixed-cluster approach for building a highly porous cobalt(II) isonicotinic acid framework: Gas sorption properties and computational analyses. Inorg. Chem. 2017, 56, 2379–2382. [Google Scholar] [CrossRef] [PubMed]
- Li, W.D.; Guo, X.Z.; Zhang, Z.Y.; Chen, S.S. Metal(II) coordination polymers derived from mixed 4-imidazole ligands and carboxylates: Syntheses, topological structures, and properties. Polymers 2018, 10, 622. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.H.; Chen, Y.G.; Tang, G.; Liu, S.X. Polynuclear complexes of main group and transition metals with polyaminopolycarboxylate and polyoxometalate. Dalton Trans. 2012, 41, 9971. [Google Scholar] [CrossRef]
- Gao, F.; Chunji, N.; Ni, J. Study on mixed ligand complexes of rare earth with nitrilotriacetic acid and amino acid. Chin. J. Appl. Chem. 1990, 3, 10–13. [Google Scholar]
- Trevin, S.; Bedioui, F.; Gomez, M.G.; Charreton, C.B. Electro polymerized nickel Micro cyclic complex—Base films design and elctro-catalytic application. J. Mater. Chem. 1997, 7, 923–928. [Google Scholar] [CrossRef]
- Ahmed, A.H.; Sherif, E.M. Methylenedisalicylic acid as a bio corrosion inhibitor for aluminum in concentrated sodium chloride solutions. ACS Omega 2022, 7, 19193–19203. [Google Scholar] [CrossRef] [PubMed]
- Perez-Cano, H.J.; Robles-Contreras, A. Basic aspects of the mechanisms of bacterial resistance. Rev. Med. MD 2013, 4, 186–191. [Google Scholar]
- Kantouch, A.; Atef El-Sayed, A.; Salama, M.; Abou El-Kheir, A.; Mowafi, S. Disalicylic acid and some of its derivatives as antibacterial agents for viscose fabric. Int. J. Biol. Macromol. 2013, 62, 603–607. [Google Scholar] [CrossRef]
- Yishan, F.; Jianxin, F.; Chunjing, T.; Pengfei, L.; Bo, C. Mechanical properties and antibacterial activities of novel starch-based composite films incorporated with disalicylic acid. Int. J. Biol. Macromol. 2020, 155, 1350–1358. [Google Scholar]
- Ghezzi, L.; Spepi, A.; Agnolucci, M.; Cristani, C.; Giovannetti, M.; Tiné, M.R.; Duce, C. Kinetics of release and antibacterial activity of disalicylic acid loaded into halloysite nanotubes. Appl. Clay Sci. 2018, 160, 88–94. [Google Scholar] [CrossRef]
- Cushman, M.; Kanamathareddy, S. Synthesis of the covalent hydrate of the incorrectly assumed structure of aurintricarboxylic acid (ATA). Tetrahedron 1990, 46, 1491–1498. [Google Scholar] [CrossRef]
- Thabet, M.S.; Ahmed, A.H. Ship-in-a-bottle synthesis and physicochemical studies on zeolite encapsulated Mn(II), Mn(III)-semicarbazone complexes: Application in the heterogeneous hydroxylation of benzene. J. Porous Mater. 2013, 20, 319–330. [Google Scholar] [CrossRef]
- Mott, N.F.; Davis, E.A. Electronic Processes in Non-Crystalline Materials, 2nd ed.; Clarendon Press: Oxford, UK, 1979. [Google Scholar]
- Ahmed, A.H.; Hassan, A.M.; Gumaa, H.A.; Mohamed, B.H.; Eraky, A.M. Physicochemical studies on some selected oxaloyldihydrazones and their novel palladium(II) complexes along with using oxaloyldihydrazones as corrosion resistants. Inorg. Nano-Met. Chem. 2017, 47, 1652–1663. [Google Scholar] [CrossRef]
- Ahmed, A.H.; Hassan, A.M.; Gumaa, H.A.; Mohamed, B.H.; Eraky, A.M.; Omran, A.A. Copper(II)-oxaloyldihydrazone complexes: Physico-chemicalstudies; energy band gap and inhibition evaluation of free oxaloyldihydrazones toward the corrosion of copper metal in acidic medium. Arab. J. Chem. 2019, 12, 4287–4302. [Google Scholar] [CrossRef]
- Hindler, J.A.; Howard, B.J.; Keiser, J.F. Antimicrobial agents and Susceptibility testing. In Clinical and Pathogenic Microbiology; Howard, B.J., Ed.; Mosby-Year Book Inc.: St. Louis, MO, USA, 1994. [Google Scholar]
- Abo-Ashour, M.F.; Eldehna, W.M.; Nocentini, A.; Bonardi, A.; Bua, S.; Ibrahim, H.S.; Elaasser, M.M.; Kryštof, V.; Jorda, R.; Gratteri, P.; et al. 3-Hydrazinoisatin-based benzenesulfonamides as novel carbonic anhydrase inhibitors endowed with anticancer activity: Synthesis, in vitro biological evaluation and in silico insights. Eur. J. Med. Chem. 2019, 184, 111768. [Google Scholar] [CrossRef]
- Gomha, S.M.; Riyadh, S.M.; Mahmmoud, E.A.; Elaasser, M.M. Synthesis and anticancer activities of thiazoles, 1,3-thiazines, and thiazolidine using chitosan-grafted-poly(vinylpyridine) as basic catalyst. Heterocycles 2015, 91, 1227–1243. [Google Scholar]
- Ali, A.M.; Ahmed, A.H.; Mohamed, T.A.; Mohamed, B.H. Chelates and corrosion inhibition of newly synthesized Schiff bases derived from o- toluidine. Transit. Met. Chem. 2007, 32, 461–467. [Google Scholar] [CrossRef]
- Pettinari, C.; Lorenzotti, A.; Pellei, M.; Santini, C. Zinc(II), cadmium(II) and mercury(II) derivatives of bis(4-halopyrazol-1-yl)alkanes: Synthesis, spectroscopic characterization and behaviour in solution. Polyhedron 1997, 16, 3435–3445. [Google Scholar] [CrossRef]
- Adhikari, S.; Bhattacharjee, T.; Butcher, R.J.; Porchia, M.; De Franco, M.; Marzano, C.; Gandin, V.; Tisato, F. Synthesis and characterization of mixed-ligand Zn(II) and Cu(II) complexes including polyamines and dicyano-dithiolate(2-): In vitro cytotoxic activity of Cu(II) compounds. Inorg. Chim. Acta 2019, 498, 119098. [Google Scholar] [CrossRef]
- Lal, R.A.; Basumatary, D.; Arjun, K.D.; Kumar, A. Synthesis and spectral characterization of zinc(II), copper(II), nickel(II) and manganese(II) complexes derived from bis(2-hydroxy-1-naphthaldehyde) malonoyldihydrazone. Transit. Met. Chem. 2007, 32, 481–493. [Google Scholar] [CrossRef]
- Temel, H.; Çakir, Ü.; Otludil, B.; Uğraş, H.İ. Synthesis, spectral and biological studies of Mnn(II), NiII), Cu(II), and Zn(II) complexes with a tetradentate Schiff base ligand. complexation studies and the determination of stability constants (Ke). Synth. React. Inorg. Met-Org Chem. 2001, 31, 1323–1337. [Google Scholar] [CrossRef]
- Joseyphus, R.S.; Nair, M.S. Synthesis, characterization and biological studies of some Co(II), Ni(II) and Cu(II) complexes derived from indole-3-carboxaldehyde and glycylglycine, as Schiff base ligand. Arab. J. Chem. 2010, 3, 195–204. [Google Scholar] [CrossRef]
- Patterson, A. The Scherrer formula for X-ray particle size determination. Phys. Rev. 1939, 56, 978–982. [Google Scholar] [CrossRef]
- Streetman, B.G. Solid State Electronic Devices, 5th ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2000. [Google Scholar]
- Karipcin, F.; Dede, B.; Caglar, Y.; Hur, D.; Ilican, S.; Caglar, M.; Sahin, Y. A new dioxime ligand and its trinuclear copper(II) complex: Synthesis, characterization and optical properties. Opt. Commun. 2007, 272, 131–137. [Google Scholar] [CrossRef]
- Sengupta, S.K.; Pandey, O.P.; Srivastava, B.K.; Sharma, V. Trends in Structural Mechanics: Theory, Practice. Transit. Met. Chem. 1998, 23, 349–353. [Google Scholar] [CrossRef]
- Turan, N.; Gündüz, B.; Körkoca, H.; Adigüzel, R.; Çolak, N.; Buldurun, K. Study of structure and spectral characteristics of the zinc(II) and copper(II) complexes with 5,5-dimethyl-2-(2-(3-nitrophenyl)hydrazono)cyclohexane-1,3-dione and their effects on optical properties and the developing of the energy band gap and investigation of antibacterial activity. J. Mex. Chem. Soc. 2014, 58, 65–75. [Google Scholar]
- Gittleman, J.I.; Sichel, E.K.; Arie, Y. Composite semiconductors: Selective absorbers of solar energy. Sol. Energy Mater. 1979, 1, 93–104. [Google Scholar] [CrossRef]
- Belmokhtar, A.; Yahiaoui, A.; Hachemaoui, A.I.; Abdelghani, B.; Sahli, N.; Belbachir, M. A Novel Poly{(2,5-diylfuran)(benzylidene)}: A new synthetic approach and electronic properties. ISRN Phys. Chem. 2011, 2012, 781879. [Google Scholar]
- Yakuphanoglu, F.; Erten, H. Refractive index dispersion and analysis of the optical constants of an ionomer thin film. Opt. Appl. 2005, 4, 969–976. [Google Scholar]
- Paul, T.C.; Podder, J. Synthesis and characterization of Zn-incorporated TiO2 thin flms: Impact of crystallite size on X-ray line broadening and bandgap tuning. Appl. Phys. A 2019, 125, 818. [Google Scholar] [CrossRef]
- Amin, B.H.; Ahmed, H.Y.; El Gazzar, E.M.; Badawy, M.M.M. Enhancement the mycosynthesis of selenium nanoparticles by using gamma radiation. Dose-Response Int. J. 2021, 4, 15593258211059323. [Google Scholar] [CrossRef]
- Fabrega, A.; Vila, J. Salmonella enterica serovar typhimurium skills to succeed in the host: Virulence and regulation. Clin. Microbiol. Rev. 2013, 26, 308–341. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, A.H. N,N′-bis[2-hydroxynaphthylidene]/[2-methoxybenzylidene]amino]oxamides and their divalent manganese complexes: Isolation, spectral characterization, morphology, antibacterial and cytotoxicity against leukemia cells. Open Chem. 2020, 18, 426–437. [Google Scholar] [CrossRef]
- Ahmed, A.H.; Hassan, A.M.; Gumaa, H.A.; Mohamed, B.H.; Eraky, A.M. Nickel(II)-oxaloyldihydrazone complexes: Characterization, indirect band gap energy and antimicrobial evaluation. Cogent Chem. 2016, 2, 1142820. [Google Scholar] [CrossRef]
- Kavitha, P.; Reddy, K.L. Synthesis, spectral characterization, morphology, biological activity and DNA cleavage studies of metal complexes with chromone Schiff base. Arab. J. Chem. 2016, 9, 596–605. [Google Scholar] [CrossRef]
- Mohareb1, R.M.; EL-Sharkawy, K.A.; Al Farouk, F.O. Synthesis, cytotoxicity against cancer and normal cell lines of novel hydrazide–hydrazine derivatives bearing 5H-chromen-5-one. Med. Chem. Res. 2019, 28, 885–1900. [Google Scholar]
- Baxter, G.J.; Graham, A.B.; Lawrence, J.R.; Wiles, D.; Paterson, J.R. Salicylic acid acid in soups prepared from organically and non-organically grown vegetables. Eur. J. Nutr. 2001, 40, 289–292. [Google Scholar] [CrossRef]
- William, P.; Coleman, M.D., III; Harold, J.; Brody, M.D. Advances in chemical peeling. Dermatol. Clin. 1997, 15, 19–26. [Google Scholar]
Compound | Wavenumbers of Infrared Data (cm−1) | XRD Data | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Phenolic (OH) Str. | Phenolic (OH) Bend. | Phenolic (C–O) Str. | Carboxylic (OH) (H-Bond) Str. | (C=O) L: Carboxylic Complex: Carboxylate Str. | (Zn–O) Str. | Angle (d Value) | θ° | β (Rad) | D (nm) | |
MHB | ≈3150 | 1200 | 1281 | 2395–3650 | 1648 | - | 13.206° (6.699 Å), 15.324° (5.777 Å), 16.239°(5.454 Å), 19.169° (4.626 Å), 19.797° (4.481 Å), 22.694° (3.915 Å), 23.424° (3.795 Å), 26.521° (3.358 Å), 29.789° (2.997 Å), 30.990° (2.883 Å), 34.075° (2.629 Å), 35.858° (2.502 Å), 38.488° (2.337 Å), 40.300° (2.236 Å), 42.072° (2.146 Å) | 23.47 | 0.0105 | 15.1 |
Zn-MHB | - | - | 1248 | - | 1554 | 618, 624 | 7.387° (11.95800 Å) | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmed, A.H.; Althobaiti, I.O.; Aljohani, M.; Gad, E.S.; Asiri, Y.M.; Hussein, O.A. Mammalian Cell Cytotoxicity, Antibacterial Activity and the Properties of Methylenebis(Hydroxybenzoic Acid) and Its Related Zinc(II) Complex. Crystals 2024, 14, 88. https://doi.org/10.3390/cryst14010088
Ahmed AH, Althobaiti IO, Aljohani M, Gad ES, Asiri YM, Hussein OA. Mammalian Cell Cytotoxicity, Antibacterial Activity and the Properties of Methylenebis(Hydroxybenzoic Acid) and Its Related Zinc(II) Complex. Crystals. 2024; 14(1):88. https://doi.org/10.3390/cryst14010088
Chicago/Turabian StyleAhmed, Ayman H., Ibrahim O. Althobaiti, Marwah Aljohani, Ehab S. Gad, Yazeed M. Asiri, and Omar A. Hussein. 2024. "Mammalian Cell Cytotoxicity, Antibacterial Activity and the Properties of Methylenebis(Hydroxybenzoic Acid) and Its Related Zinc(II) Complex" Crystals 14, no. 1: 88. https://doi.org/10.3390/cryst14010088
APA StyleAhmed, A. H., Althobaiti, I. O., Aljohani, M., Gad, E. S., Asiri, Y. M., & Hussein, O. A. (2024). Mammalian Cell Cytotoxicity, Antibacterial Activity and the Properties of Methylenebis(Hydroxybenzoic Acid) and Its Related Zinc(II) Complex. Crystals, 14(1), 88. https://doi.org/10.3390/cryst14010088