Processes and Properties of Self-Lubricating Coatings Fabricated on Light Alloys by Using Micro-Arc Oxidation: A Review
Abstract
:1. Introduction
2. Three Approaches to Form Self-Lubricating Coatings through MAO
2.1. In Situ Synthesis of Lubricating Phase
2.2. In Situ Incorporation of Lubricating Phase
2.3. Two-Step Process: MAO and Post-Treatment
3. Summary and Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, H.; Wang, W.; Le, K.; Liu, Y.; Gao, X.; Luo, Y.; Zhao, X.; Liu, X.; Xu, S.; Liu, W. Effects of substrate roughness on the tribological properties of duplex plasma nitrided and MoS2 coated Ti6Al4V alloy. Tribol. Int. 2024, 191, 109123. [Google Scholar] [CrossRef]
- Merino, E.; Chandrasekar, A.R.; Pakseresht, A.; Mohedano, M.; Durán, A.; Castro, Y. Improved corrosion resistance of AZ31B Mg alloy by eco-friendly flash-PEO coatings. Appl. Surf. Sci. Adv. 2024, 20, 100587. [Google Scholar] [CrossRef]
- Hao, Y.; Ye, Z.; Ye, M.; Dong, H.; Wang, L.; Du, Y. Construction and growth of black PEO coatings on aluminum alloys for enhanced wear and impact resistance. Ceram. Int. 2023, 49, 30782–30793. [Google Scholar] [CrossRef]
- Li, H.-F.; Huang, J.-Y.; Lin, G.-C.; Wang, P.-Y. Recent advances in tribological and wear properties of biomedical metallic materials. Rare Met. 2021, 40, 3091–3106. [Google Scholar] [CrossRef]
- Yuan, Z.; He, Y.; Lin, C.; Liu, P.; Cai, K. Antibacterial surface design of biomedical titanium materials for orthopedic applications. J. Mater. Sci. Technol. 2021, 78, 51–67. [Google Scholar] [CrossRef]
- Wang, Y.; Ba, F.; Chai, Z.; Zhang, Z. A review of thermal control coatings prepared by micro-arc oxidation on light alloys. Int. J. Electrochem. Sci. 2024, 19, 100514. [Google Scholar] [CrossRef]
- Yao, W.H.; Wu, L.; Wang, J.F.; Jiang, B.; Zhang, D.F.; Serdechnova, M.; Shulha, T.; Blawert, C.; Zheludkevich, M.L.; Pan, F.S. Micro-arc oxidation of magnesium alloys: A review. J. Mater. Sci. Technol. 2022, 118, 158–180. [Google Scholar] [CrossRef]
- Sunil, B.R.; Kranthi Kiran, A.S.; Ramakrishna, S. Surface functionalized titanium with enhanced bioactivity and antimicrobial properties through surface engineering strategies for bone implant applications. Curr. Opin. Biomed. Eng. 2022, 23, 100398. [Google Scholar] [CrossRef]
- Muthaiah, V.M.S.; Indrakumar, S.; Suwas, S.; Chatterjee, K. Surface engineering of additively manufactured titanium alloys for enhanced clinical performance of biomedical implants: A review of recent developments. Bioprinting 2022, 25, e00180. [Google Scholar] [CrossRef]
- Qian, L.; Sun, M.; Huang, N.; Yang, P.; Jing, F.; Zhao, A.; Akhavan, B. Biodegradable PTMC-MAO composite coatings on AZ31 Mg-alloys for enhanced corrosion-resistance. J. Alloys Compd. 2024, 998, 175017. [Google Scholar] [CrossRef]
- Zhang, J.; Dai, W.; Wang, X.; Wang, Y.; Yue, H.; Li, Q.; Yang, X.; Guo, C.; Li, C. Micro-arc oxidation of Al alloys: Mechanism, microstructure, surface properties, and fatigue damage behavior. J. Mater. Res. Technol. 2023, 23, 4307–4333. [Google Scholar] [CrossRef]
- Weng, Z.; Gu, K.; Cui, C.; Cai, H.; Liu, X.; Wang, J. Microstructure evolution and wear behavior of titanium alloy under cryogenic dry sliding wear condition. Mater. Charact. 2020, 165, 110385. [Google Scholar] [CrossRef]
- Fan, J.; Wang, H.; Sun, W.; Duan, H.; Jiang, J. Recent developments and perspectives of Ti-based transition metal carbides/nitrides for photocatalytic applications: A critical review. Mater. Today 2024, 76, 110–135. [Google Scholar] [CrossRef]
- Dai, X.-J.; Li, X.-C.; Wang, C.; Yu, S.; Yu, Z.-T.; Yang, X.-R. Effect of MAO/Ta2O5 composite coating on the corrosion behavior of Mg–Sr alloy and its in vitro biocompatibility. J. Mater. Res. Technol. 2022, 20, 4566–4575. [Google Scholar] [CrossRef]
- Ogur, E.; Alves, A.C.; Toptan, F. Advancing titanium-based surfaces via micro-arc oxidation with solid substance incorporation: A systematic review. Mater. Today Commun. 2024, 110343. [Google Scholar] [CrossRef]
- Yang, C.; Sheng, L.; Zhao, C.; Wu, D.; Zheng, Y. Regulating the ablation of nanoparticle-doped MAO coating on Mg alloy by MgF2 passivation layer construction. Mater. Lett. 2024, 355, 135559. [Google Scholar] [CrossRef]
- Jiao, Z.-J.; Li, C.-Y.; Du, Y.-K.; Cui, L.-Y.; Chen, X.-B.; Xi, Y.-M.; Zeng, R.-C. In vitro degradation and biocompatibility of in-situ fabricated Mg-Al-Ga-LDH/MAO hybrid coating on Mg alloy AZ31. Surf. Coat. Technol. 2023, 472, 129922. [Google Scholar] [CrossRef]
- Song, D.D.; Wan, H.X. Key factor for the corrosion resistance of MAO coating on Mg alloy. Mater. Chem. Phys. 2023, 305, 127963. [Google Scholar] [CrossRef]
- Li, W.; Tian, A.; Li, T.; Zhao, Y.; Chen, M. Ag/ZIF-8/Mg-Al LDH composite coating on MAO pretreated Mg alloy as a multi-ion-release platform to improve corrosion resistance, osteogenic activity, and photothermal antibacterial properties. Surf. Coat. Technol. 2023, 464, 129555. [Google Scholar] [CrossRef]
- Chen, W.H.; Huang, S.-Y.; Chu, Y.-R.; Yang, S.-H.; Cheng, I.C.; Jian, S.-Y.; Lee, Y.-L. Effect of TiO2 nanoparticles on the corrosion resistance, wear, and antibacterial properties of microarc oxidation coatings applied on AZ31 magnesium alloy. Surf. Coat. Technol. 2024, 476, 130238. [Google Scholar] [CrossRef]
- Xu, Y.; Fu, S.; Lu, H.; Li, W. Process optimization, microstructure characterization, and tribological performance of Y2O3 modified Ti6Al4V-WC gradient coating produced by laser cladding. Surf. Coat. Technol. 2024, 478, 130496. [Google Scholar] [CrossRef]
- Yu, X.; Jiang, R.; Gao, Y.; Li, Y.; Gong, W.; Li, X.; Lü, W. Microstructure and wear-resistant behaviors of Al2O3-TiO2 reinforced Ni-based composite coating plasma-sprayed on 6061 aluminum alloy. Surf. Coat. Technol. 2024, 487, 131032. [Google Scholar] [CrossRef]
- Yin, B.; Peng, Z.; Liang, J.; Jin, K.; Zhu, S.; Yang, J.; Qiao, Z. Tribological behavior and mechanism of self-lubricating wear-resistant composite coatings fabricated by one-step plasma electrolytic oxidation. Tribol. Int. 2016, 97, 97–107. [Google Scholar] [CrossRef]
- He, C.; Li, S.; Fan, X.; Zhao, X.; He, J.; Zhang, L.; Deng, C. Thermal-sprayed ceramic/fluoropolymer coatings with tight bond and self-lubrication: Microstructure, tribological properties, and lubrication mechanism. Appl. Surf. Sci. 2024, 660, 159954. [Google Scholar] [CrossRef]
- Ye, W.; Shi, Y.; Zhou, Q.; Xie, M.; Wang, H.; Bou-Saïd, B.; Liu, W. Recent advances in self-lubricating metal matrix nanocomposites reinforced by carbonous materials: A review. Nano Mater. Sci. 2024. [Google Scholar] [CrossRef]
- Kumar, A.; Kumar, M.; Tailor, S. Self-lubricating composite coatings: A review of deposition techniques and material advancement. Mater. Today Proc. 2023. [Google Scholar] [CrossRef]
- Torres, H.; Pichelbauer, K.; Budnyk, S.; Schachinger, T.; Gachot, C.; Rodríguez Ripoll, M. A Ni-Bi self-lubricating Ti6Al4V alloy for high temperature sliding contacts. J. Alloys Compd. 2023, 944, 169216. [Google Scholar] [CrossRef]
- Zhao, X.; Lyu, P.; Fang, S.; Li, S.; Tu, X.; Ren, P.; Liu, D.; Chen, L.; Xiao, L.; Liu, S. Microstructure and Wear Behavior of Ti-xFe-SiC In Situ Composite Ceramic Coatings on TC4 Substrate from Laser Cladding. Materials 2024, 17, 100. [Google Scholar] [CrossRef]
- Tan, Q.; Liu, K.; Li, J.; Geng, S.; Sun, L.; Skuratov, V. A review on cracking mechanism and suppression strategy of nickel-based superalloys during laser cladding. J. Alloys Compd. 2024, 1001, 175164. [Google Scholar] [CrossRef]
- Gao, Z.; Wang, L.; Wang, Y.; Lyu, F.; Zhan, X. Crack defects and formation mechanism of FeCoCrNi high entropy alloy coating on TC4 titanium alloy prepared by laser cladding. J. Alloys Compd. 2022, 903, 163905. [Google Scholar] [CrossRef]
- Bao, Y.; Deng, J.; Cao, S.; Ma, K.; Zhang, Z.; Lu, Y. Laser micro-cladding in situ forming textured surface to improve the tribological performance. Wear 2024, 550–551, 205422. [Google Scholar] [CrossRef]
- Baiocco, G.; Menna, E.; Mingione, E.; Rubino, G.; Ucciardello, N. Effect of process parameters and film stratification on morphology and performance of auto-lubricating Ni-GnP electroplated coated steel. Eng. Fail. Anal. 2024, 161, 108223. [Google Scholar] [CrossRef]
- Zhou, S.; Liu, Z.; Lu, Z.; Ma, L. Carbon dot/nickel nanocomposite coating for wear and corrosion control of Mg alloy: Experimental and theoretical studies. Appl. Surf. Sci. 2024, 659, 159845. [Google Scholar] [CrossRef]
- Sohrabi, M.; Tavakoli, H.; Koohestani, H.; Akbari, M. Utilization of Ni-Cu/Al2O3 co-deposition composite coatings on mild steel surface via electroplating method and evaluation of its tribological, electrochemical properties. Surf. Coat. Technol. 2023, 475, 130118. [Google Scholar] [CrossRef]
- Liu, J.; Li, S.; Wang, C.; Deng, C.; Mao, J.; Tan, X.; Li, W.; Zhang, P.; Wang, Q. Self-lubricating design strategy for thermally sprayed ceramic coatings by in-situ synthesis of carbon spheres. Surf. Coat. Technol. 2022, 446, 128759. [Google Scholar] [CrossRef]
- Ling, X.; Lin, X.; Li, F.; Fan, X.; Li, S.; Song, J.; Wang, W.; Zhao, X.; Yang, K.; He, J. Design of solid-liquid composite lubrication coatings based on thermal sprayed ceramic templet. Ceram. Int. 2024, 50, 22346–22358. [Google Scholar] [CrossRef]
- Li, C.-J.; Luo, X.-T.; Yao, S.-W.; Li, G.-R.; Li, C.-X.; Yang, G.-J. The Bonding Formation during Thermal Spraying of Ceramic Coatings: A Review. J. Therm. Spray Technol. 2022, 31, 780–817. [Google Scholar] [CrossRef]
- Vuchkov, T.; Yaqub, T.B.; Evaristo, M.; Cavaleiro, A. Synthesis, microstructural and mechanical properties of self-lubricating Mo-Se-C coatings deposited by closed-field unbalanced magnetron sputtering. Surf. Coat. Technol. 2020, 394, 125889. [Google Scholar] [CrossRef]
- Vuchkov, T.; Sunny, S.J.; Cavaleiro, A. Tribological study of W-S-(C) sputtered coatings sliding against aluminium at elevated temperatures. Surf. Coat. Technol. 2024, 483, 130750. [Google Scholar] [CrossRef]
- Mufti, T.A.; Jan, S.G.; Wani, M.F.; Sehgal, R. Development, mechanical characterization and high temperature tribological evaluation of magnetron sputtered novel MoS2-CaF2-Ag coating for aerospace applications. Tribol. Int. 2023, 182, 108374. [Google Scholar] [CrossRef]
- Straffelini, G.; Gariboldi, E. Sliding behaviour of hard and self-lubricating PVD coatings against a Mg-alloy. Wear 2007, 263, 1341–1346. [Google Scholar] [CrossRef]
- Incerti, L.; Rota, A.; Valeri, S.; Miguel, A.; García, J.A.; Rodríguez, R.J.; Osés, J. Nanostructured self-lubricating CrN-Ag films deposited by PVD arc discharge and magnetron sputtering. Vacuum 2011, 85, 1108–1113. [Google Scholar] [CrossRef]
- Acquesta, A.; Russo, P.; Monetta, T. Plasma Electrolytic Oxidation Treatment of AZ31 Magnesium Alloy for Biomedical Applications: The Influence of Applied Current on Corrosion Resistance and Surface Characteristics. Crystals 2023, 13, 510. [Google Scholar] [CrossRef]
- Singh, A.K.; Drunka, R.; Smits, K.; Vanags, M.; Iesalnieks, M.; Joksa, A.A.; Blumbergs, I.; Steins, I. Nanomechanical and Electrochemical Corrosion Testing of Nanocomposite Coating Obtained on AZ31 via Plasma Electrolytic Oxidation Containing TiN and SiC Nanoparticles. Crystals 2023, 13, 508. [Google Scholar] [CrossRef]
- Oh, G.H.; Yoon, J.K.; Huh, J.Y.; Doh, J.M. Enhancing corrosion resistance and microstructure of the PEO coating layer on 6061 aluminium alloy: The role of first step voltage in plasma electrolytic oxidation. Corros. Sci. 2024, 233, 112123. [Google Scholar] [CrossRef]
- Mu, M.; Zhou, X.; Xiao, Q.; Liang, J.; Huo, X. Preparation and tribological properties of self-lubricating TiO2/graphite composite coating on Ti6Al4V alloy. Appl. Surf. Sci. 2012, 258, 8570–8576. [Google Scholar] [CrossRef]
- Mojsilović, K.; Serdechnova, M.; Blawert, C.; Zheludkevich, M.L.; Stojadinović, S.; Vasilić, R. In-situ incorporation of LDH particles during PEO processing of aluminium alloy AA2024. Appl. Surf. Sci. 2024, 654, 159450. [Google Scholar] [CrossRef]
- Babaei, K.; Fattah-alhosseini, A.; Molaei, M. The effects of carbon-based additives on corrosion and wear properties of Plasma electrolytic oxidation (PEO) coatings applied on Aluminum and its alloys: A review. Surf. Interfaces 2020, 21, 100677. [Google Scholar] [CrossRef]
- Yang, C.; Chen, P.H.; Wu, W.X.; Sheng, L.Y.; Zheng, Y.F.; Chu, P.K. A Review of Corrosion-Resistant PEO Coating on Mg Alloy. Coatings 2024, 14, 451. [Google Scholar] [CrossRef]
- Fattah-alhosseini, A.; Chaharmahali, R.; Kaseem, M. Corrosion behavior amelioration of Ti-based alloys by the hybrid plasma electrolytic oxidation (PEO)/polymer coatings: A review. Hybrid Adv. 2024, 5, 100151. [Google Scholar] [CrossRef]
- Fernández-López, P.; Alves, S.A.; San-Jose, J.T.; Gutierrez-Berasategui, E.; Bayón, R. Plasma Electrolytic Oxidation (PEO) as a Promising Technology for the Development of High-Performance Coatings on Cast Al-Si Alloys: A Review. Coatings 2024, 14, 217. [Google Scholar] [CrossRef]
- Kaseem, M.; Lee, Y.H.; Ko, Y.G. Incorporation of MoO2 and ZrO2 particles into the oxide film formed on 7075 Al alloy via micro-arc oxidation. Mater. Lett. 2016, 182, 260–263. [Google Scholar] [CrossRef]
- Mu, M.; Liang, J.; Zhou, X.; Xiao, Q. One-step preparation of TiO2/MoS2 composite coating on Ti6Al4V alloy by plasma electrolytic oxidation and its tribological properties. Surf. Coat. Technol. 2013, 214, 124–130. [Google Scholar] [CrossRef]
- Chang, F.-C.; Wang, C.-J.; Lee, J.-W.; Lou, B.-S. Microstructure and mechanical properties evaluation of molybdenum disulfide-titania nanocomposite coatings grown by plasma electrolytic oxidation. Surf. Coat. Technol. 2016, 303, 68–77. [Google Scholar] [CrossRef]
- Wu, X.; Li, H.; Lu, J.; Li, Y.; Yang, C.; Cen, Y.; Yang, Z.; Song, R. MoS2 additive to the MAO Al2O3 composite coatings with enhanced mechanical performances. Mater. Res. Express 2019, 6, 016543. [Google Scholar] [CrossRef]
- Lou, B.-S.; Lee, J.-W.; Tseng, C.-M.; Lin, Y.-Y.; Yen, C.-A. Mechanical property and corrosion resistance evaluation of AZ31 magnesium alloys by plasma electrolytic oxidation treatment: Effect of MoS2 particle addition. Surf. Coat. Technol. 2018, 350, 813–822. [Google Scholar] [CrossRef]
- Yi, M.; Zhang, C. The synthesis of MoS2 particles with different morphologies for tribological applications. Tribol. Int. 2017, 116, 285–294. [Google Scholar] [CrossRef]
- Zhu, X.H.; Fu, J.G.; Ma, D.Q.; Ma, C.S.; Fu, Y.Y.; Zhang, Z.K. Effect of nano h-BN particles on growth regularity and tribological behavior of PEO composite ceramic coating of ZL109 alloy. Sci. Rep. 2022, 12, 995. [Google Scholar] [CrossRef]
- Gao, Y.; Xiao, S.; Wu, H.; Wu, C.; Chen, G.; Yin, Y.; Chu, P.K. Effect of h-BN nanoparticles incorporation on the anti-corrosion and anti-wear properties of micro-arc oxidation coatings on 2024 aluminum alloy. Ceram. Int. 2023, 49, 37475–37485. [Google Scholar] [CrossRef]
- Li, Z.W.; Di, S.C. The Microstructure and Wear Resistance of Microarc Oxidation Composite Coatings Containing Nano-Hexagonal Boron Nitride (HBN) Particles. J. Mater. Eng. Perform. 2017, 26, 1551–1561. [Google Scholar] [CrossRef]
- Tonelli, L.; Pezzato, L.; Dolcet, P.; Dabalà, M.; Martini, C. Effects of graphite nano-particle additions on dry sliding behaviour of plasma-electrolytic-oxidation-treated EV31A magnesium alloy against steel in air. Wear 2018, 404–405, 122–132. [Google Scholar] [CrossRef]
- Pezzato, L.; Angelini, V.; Brunelli, K.; Martini, C.; DabalÀ, M. Tribological and corrosion behavior of PEO coatings with graphite nanoparticles on AZ91 and AZ80 magnesium alloys. Trans. Nonferrous Met. Soc. China 2018, 28, 259–272. [Google Scholar] [CrossRef]
- Tao, X.; Yao, Z.; Luo, X. Comparison of tribological and corrosion behaviors of Cp Ti coated with the TiO2/graphite coating and nitrided TiO2/graphite coating. J. Alloys Compd. 2017, 718, 126–133. [Google Scholar] [CrossRef]
- Yang, C.; Sun, M.; Ying, T.; Huang, A.; Chen, P.; Zhou, C.; Chu, P.K.; Zeng, X. Optimization of tribological properties and corrosion resistance of MAO coatings on LY12 aluminum alloy by co-doping with graphite particles and in situ formation of zinc phosphate. Ceram. Int. 2024. [Google Scholar] [CrossRef]
- Han, B.; Yang, Y.; Li, J.; Deng, H.; Yang, C. Effects of the Graphene Additive on the Corrosion Resistance of the Plasma Electrolytic Oxidation (PEO) Coating on the AZ91 Magnesium Alloy. Int. J. Electrochem. Sci. 2018, 13, 9166–9182. [Google Scholar] [CrossRef]
- Chen, Q.; Jiang, Z.; Tang, S.; Dong, W.; Tong, Q.; Li, W. Influence of graphene particles on the micro-arc oxidation behaviors of 6063 aluminum alloy and the coating properties. Appl. Surf. Sci. 2017, 423, 939–950. [Google Scholar] [CrossRef]
- Li, D.-l.; Li, C.-w.; Chen, H.; Tian, C.-l. Preparation of microarc oxidation coating containing graphene combined with micro-arc oxidation and electrophoretic deposition. Mater. Chem. Phys. 2022, 290, 126598. [Google Scholar] [CrossRef]
- Askarnia, R.; Fardi, S.R.; Sobhani, M.; Staji, H.; Aghamohammadi, H. Effect of graphene oxide on properties of AZ91 magnesium alloys coating developed by micro-arc oxidation process. J. Alloys Compd. 2022, 892, 162106. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, F.; Zhang, Y.; Du, C. 1Influence of graphene oxide additive on the tribological and electrochemical corrosion properties of a PEO coating prepared on AZ31 magnesium alloy. Tribol. Int. 2020, 146, 106135. [Google Scholar] [CrossRef]
- Yürektürk, Y.; Muhaffel, F.; Baydoğan, M. Characterization of micro arc oxidized 6082 aluminum alloy in an electrolyte containing carbon nanotubes. Surf. Coat. Technol. 2015, 269, 83–90. [Google Scholar] [CrossRef]
- Isaza, M.C.A.; Zuluaga, D.B.; Rudas, J.S.; Estupiñán, D.H.A.; Herrera, R.J.M.; Meza, J.M. Mechanical and Corrosion Behavior of Plasma Electrolytic Oxidation Coatings on AZ31B Mg Alloy Reinforced with Multiwalled Carbon Nanotubes. J. Mater. Eng. Perform. 2020, 29, 1135–1145. [Google Scholar] [CrossRef]
- Lu, C.; Feng, X.; Yang, J.; Jia, J.; Yi, G.; Xie, E.; Sun, Y. Influence of surface microstructure on tribological properties of PEO-PTFE coating formed on aluminum alloy. Surf. Coat. Technol. 2019, 364, 127–134. [Google Scholar] [CrossRef]
- Tuo, Y.; Yang, Z.; Guo, Z.; Chen, Y.; Hao, J.; Zhao, Q.; Kang, Y.; Zhang, Y.; Zhao, Y. Pore structure optimization of MoS2/Al2O3 self-lubricating ceramic coating for improving corrosion resistance. Vacuum 2023, 207, 111687. [Google Scholar] [CrossRef]
- Yang, Z.; Ning, B.; Chen, Y.; Wang, N.; Zhao, Q.; Zhang, Z.; Hou, Z.; Kang, Y.; Gao, G.; Hua, K. Revealing the anti-friction mechanism of in-situ synthesized MoS2-S nanocomposite coating under different shear stress. Tribol. Int. 2024, 195, 109587. [Google Scholar] [CrossRef]
- Sun, S.; Shang, J. Improved wear and corrosion resistance of MoS2/MgO/MgAl2O4 composite layer in-situ prepared by one-step micro-arc oxidation. Mater. Today Commun. 2024, 40, 110151. [Google Scholar] [CrossRef]
- Li, Q.; Shang, J. Self-lubricating properties of Al2O3/MoS2/CePO4 composite layers in-situ prepared by micro arc oxidation on 6082-T6 alloy. Mater. Today Commun. 2024, 40, 110137. [Google Scholar] [CrossRef]
- Chen, P.; Wu, Z.; Huang, Q.; Ji, S.; Weng, Y.; Wu, Z.; Ma, Z.; Chen, X.; Weng, M.; Fu, R.K.Y.; et al. A quasi-2D material CePO4 and the self-lubrication in micro-arc oxidized coatings on Al alloy. Tribol. Int. 2019, 138, 157–165. [Google Scholar] [CrossRef]
- Yang, C.; Cui, S.; Wu, Z.; Zhu, J.; Huang, J.; Ma, Z.; Fu, R.K.Y.; Tian, X.; Chu, P.K.; Wu, Z. High efficient co-doping in plasma electrolytic oxidation to obtain long-term self-lubrication on Ti6Al4V. Tribol. Int. 2021, 160, 107018. [Google Scholar] [CrossRef]
- Qi, X.; Li, J.; He, Y.; Liu, Y.; Liu, R.; Song, R. Study on the wear resistance and corrosion behaviour of self-sealed MAO/ZrO2 coatings prepared on 7075 aluminium alloy. J. Alloys Compd. 2023, 969, 172436. [Google Scholar] [CrossRef]
- Ye, J.; Khare, H.S.; Burris, D.L. Quantitative characterization of solid lubricant transfer film quality. Wear 2014, 316, 133–143. [Google Scholar] [CrossRef]
- Nie, W.; Xiang, M.; Yu, L.; Zhao, Y.; You, C.; Chen, M. Self-lubricating micro-arc oxidized polytetrafluoroethylene composite coating on rivet steel for improve corrosion/wear resistance. Mater. Chem. Phys. 2023, 306, 128019. [Google Scholar] [CrossRef]
- Qi, X.; Gao, H.; He, Y.; Su, X.; Song, R. Microstructure and properties of a MAO/PA/MoS2 composite coating formed on 6063 aluminum alloy by micro arc oxidation. Surf. Coat. Technol. 2024, 484, 130836. [Google Scholar] [CrossRef]
- Wang, S.; Wen, L.; Wang, Y.; Cheng, Y.; Cheng, Y.; Zou, Y.; Zhu, Y.; Chen, G.; Ouyang, J.; Jia, D.; et al. One-step fabrication of double-layer nanocomposite coating by plasma electrolytic oxidation with particle addition. Appl. Surf. Sci. 2022, 592, 153043. [Google Scholar] [CrossRef]
- Mortezanejad, E.; Atapour, M.; Salimijazi, H.; Alhaji, A.; Hakimizad, A. Wear and Corrosion Behavior of Aluminate- and Phosphate-Based Plasma Electrolytic Oxidation Coatings with Polytetrafluoroethylene Nanoparticles on AZ80 Mg Alloy. J. Mater. Eng. Perform. 2021, 30, 4030–4044. [Google Scholar] [CrossRef]
- Chen, Y.; Lu, X.; Blawert, C.; Zheludkevich, M.L.; Zhang, T.; Wang, F. Formation of self-lubricating PEO coating via in-situ incorporation of PTFE particles. Surf. Coat. Technol. 2018, 337, 379–388. [Google Scholar] [CrossRef]
- Zhang, R.; Zhao, J.; Liang, J. A novel multifunctional PTFE/PEO composite coating prepared by one-step method. Surf. Coat. Technol. 2016, 299, 90–95. [Google Scholar] [CrossRef]
- Guo, P.; Tang, M.; Zhang, C. Tribological and corrosion resistance properties of graphite composite coating on AZ31 Mg alloy surface produced by plasma electrolytic oxidation. Surf. Coat. Technol. 2019, 359, 197–205. [Google Scholar] [CrossRef]
- Ma, K.-J.; Al Bosta, M.M.S.; Wu, W.-T. Preparation of self-lubricating composite coatings through a micro-arc plasma oxidation with graphite in electrolyte solution. Surf. Coat. Technol. 2014, 259, 318–324. [Google Scholar] [CrossRef]
- Chen, X.W.; Liao, D.D.; Zhang, D.F.; Jiang, X.; Zhao, P.F.; Xu, R.S. Friction and Wear Behavior of Graphene-Modified Titanium Alloy Micro-arc Oxidation Coatings. Trans. Indian Inst. Met. 2020, 73, 73–80. [Google Scholar] [CrossRef]
- Chen, F.; Zhang, Y.; Zhang, Y. Effect of Graphene on Micro-Structure and Properties of MAO Coating Prepared on Mg-Li Alloy. Int. J. Electrochem. Sci. 2017, 12, 6081–6091. [Google Scholar] [CrossRef]
- Hu, Q.Y.; Li, X.M.; Ruan, Y.L.; Zhao, G.; Wang, G.Q.; Ding, Q.J. Friction Reduction of Aluminum Alloy Micro-arc Oxidation Coating by Filling Graphene Oxide. J. Mater. Eng. Perform. 2024. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, F.; Zhang, Y.; Liu, Z.; Wang, X.; Du, C. Influence of graphene oxide on the antiwear and antifriction performance of MAO coating fabricated on MgLi alloy. Surf. Coat. Technol. 2019, 364, 144–156. [Google Scholar] [CrossRef]
- Ji, R.; Wang, S.; Zou, Y.; Chen, G.; Wang, Y.; Ouyang, J.; Jia, D.; Zhou, Y. One-step fabrication of amorphous/ITO-CNTs coating by plasma electrolytic oxidation with particle addition for excellent wear resistance. Appl. Surf. Sci. 2023, 640, 158274. [Google Scholar] [CrossRef]
- Kara, R.; Zengin, H. Tribological and Electrochemical Corrosion Properties of CNT-Incorporated Plasma Electrolytic Oxidation (PEO) Coatings on AZ80 Magnesium Alloy. Acta Metall. Sin. 2022, 35, 1195–1206. [Google Scholar] [CrossRef]
- Ao, N.; Liu, D.; Wang, S.; Zhao, Q.; Zhang, X.; Zhang, M. Microstructure and Tribological Behavior of a TiO2/hBN Composite Ceramic Coating Formed via Micro-arc Oxidation of Ti–6Al–4V Alloy. J. Mater. Sci. Technol. 2016, 32, 1071–1076. [Google Scholar] [CrossRef]
- Shi, L.; Jiang, C.; Zhao, R.; Si, T.; Li, Y.; Qian, W.; Gao, G.; Chen, Y. Effect of Al2O3 nanoparticles additions on wear resistance of plasma electrolytic oxidation coatings on TC4 alloys. Ceram. Int. 2024, 50, 18484–18496. [Google Scholar] [CrossRef]
- NasiriVatan, H.; Ebrahimi-Kahrizsangi, R.; Asgarani, M.K. Tribological performance of PEO-WC nanocomposite coating on Mg Alloys deposited by Plasma Electrolytic Oxidation. Tribol. Int. 2016, 98, 253–260. [Google Scholar] [CrossRef]
- Ji, R.; Wang, S.; Zou, Y.; Chen, G.; Wang, Y.; Ye, Z.; Ouyang, J.; Jia, D.; Zhou, Y. Enhanced tribological performance of TiO2-hBN/CNT double-layer coating by CNT-assisted plasma electrolytic oxidation with nanoparticles addition. Tribol. Int. 2024, 198, 109885. [Google Scholar] [CrossRef]
- Ren, L.M.; Wang, T.C.; Chen, Z.X.; Li, Y.Y.; Qian, L.H. Self-Lubricating PEO-PTFE Composite Coating on Titanium. Metals 2019, 9, 170. [Google Scholar] [CrossRef]
- Lu, C.; Shi, P.; Yang, J.; Jia, J.; Xie, E.; Sun, Y. Effects of surface texturing on the tribological behaviors of PEO/PTFE coating on aluminum alloy for heavy-load and long-performance applications. J. Mater. Res. Technol. 2020, 9, 12149–12156. [Google Scholar] [CrossRef]
- Liu, A.; Gao, S.; Du, S.; Lu, H.; Guo, J. Enhancing PEO coating on TC6 alloy through in-situ synthesis of MoSe2—Towards more efficient wear-reducing lubrication and wear resistance. Tribol. Int. 2024, 193, 109409. [Google Scholar] [CrossRef]
- Küçükosman, R.; Emine Şüküroğlu, E.; Totik, Y.; Şüküroğlu, S. Investigation of wear behavior of graphite additive composite coatings deposited by micro arc oxidation-hydrothermal treatment on AZ91 Mg alloy. Surf. Interfaces 2021, 22, 100894. [Google Scholar] [CrossRef]
- Ma, C.; Cheng, D.; Zhu, X.; Yan, Z.; Fu, J.; Yu, J.; Liu, Z.; Yu, G.; Zheng, S. Investigation of a self-lubricating coating for diesel engine pistons, as produced by combined microarc oxidation and electrophoresis. Wear 2018, 394–395, 109–112. [Google Scholar] [CrossRef]
- Yang, W.; Gao, Y.; Guo, P.; Xu, D.; Hu, L.; Wang, A. Adhesion, biological corrosion resistance and biotribological properties of carbon films deposited on MAO coated Ti substrates. J. Mech. Behav. Biomed. Mater. 2020, 101, 103448. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.X.; Huang, H.M.; Chai, C.; Ren, L.M. Filling the Pores of Plasma Electrolytic Oxidation Coatings on Titanium with Hydrothermal Synthesized MoS2: Coating Structure and Tribological Performance. Mater. Trans. 2022, 63, 1151–1158. [Google Scholar] [CrossRef]
- Lv, X.; Zou, G.; Ling, K.; Yang, W.; Mo, Q.; Li, W. Tribological properties of MAO/MoS2 self-lubricating composite coating by microarc oxidation and hydrothermal reaction. Surf. Coat. Technol. 2021, 406, 126630. [Google Scholar] [CrossRef]
- Li, W.; Yan, Z.; Shen, D.; Zhang, Z.; Yang, R. Microstructures and tribological properties of MoS2 overlayers on MAO Al alloy. Tribol. Int. 2023, 181, 108348. [Google Scholar] [CrossRef]
- Qin, Y.; Xiong, D.; Li, J.; Jin, Q.; He, Y.; Zhang, R.; Zou, Y. Adaptive-lubricating PEO/Ag/MoS2 multilayered coatings for Ti6Al4V alloy at elevated temperature. Mater. Des. 2016, 107, 311–321. [Google Scholar] [CrossRef]
- Fu, J.; Li, M.; Liu, G.; Ma, S.; Zhu, X.; Ma, C.; Cheng, D.; Yan, Z. Robust ceramic based self-lubricating coating on Al–Si alloys prepared via PEO and spin-coating methods. Wear 2020, 458–459, 203405. [Google Scholar] [CrossRef]
- Wang, G.; Guo, L.; Ruan, Y.; Zhao, G.; Zhang, X.; Liu, Y.; Kim, D.-E. Improved wear and corrosion resistance of alumina alloy by MAO and PECVD. Surf. Coat. Technol. 2024, 479, 130556. [Google Scholar] [CrossRef]
- Yu, S.; Liu, Y.; Zhang, R.; Ge, X.; Li, J.; Tang, X.; Wang, W. Lubrication and anti-wear behavior of duplex annealed nanodiamonds/PEO coating on Ti6Al4V: Functional mechanism of structural transformation. Surf. Coat. Technol. 2023, 461, 129426. [Google Scholar] [CrossRef]
- Dong, X.; Xia, M.; Wang, F.; Yang, H.; Ji, G.; Nyberg, E.A.; Ji, S. A super wear-resistant coating for Mg alloys achieved by plasma electrolytic oxidation and discontinuous deposition. J. Magnes. Alloys 2023, 11, 2939–2952. [Google Scholar] [CrossRef]
- Wang, Z.; Wu, L.; Qi, Y.; Cai, W.; Jiang, Z. Self-lubricating Al2O3/PTFE composite coating formation on surface of aluminium alloy. Surf. Coat. Technol. 2010, 204, 3315–3318. [Google Scholar] [CrossRef]
Substrate | Particle | COF | Wear Rate | Ref. | |||||
---|---|---|---|---|---|---|---|---|---|
Type | Size | Concentration | Matrix | MAO Coating | Composite Self-Lubricating Coating | MAO Coating | Composite Self-Lubricating Coating | ||
TC4 | MoS2 | 0.5–1.0 μm | 20 g/L | - | 0.8 | 0.12 | 1.7 × 10−5 mm3/N/m | 5.5 × 10−6 mm3/N/m | [53] |
TC4 | 500 nm | 4 g/L | 0.58 | 0.71–0.74 | 0.48–0.54 | 6.9–9.3 × 10−4 mm3/N/m | 0.96 × 10−4 mm3/N/m | [54] | |
6063 | - | 6 g/L | - | - | 0.49 | 9–11.46 × 10−7 mm3/N/mm | 1.09–1.23 × 10−7 mm3/N/mm | [82] | |
TA15 | PTFE | 100–200 nm | - | - | 0.4–0.5 | 0.15–0.2 | - | - | [83] |
AZ80 | 200–300 nm | 10 g/L | 0.8 | - | 0.3 | - | - | [84] | |
AZ91 | 180–240 nm | 20 g/L | - | 0.64 | 0.08 | - | - | [85] | |
2024 | 484 nm | - | - | 0.64 | 0.14 | 8.21 × 10−7 mm3/N/m | 7.80 × 10−5 mm3/N/m | [86] | |
AZ31 | Graphite | 10–70 μm | 0–25 g/L | 0.1–0.2 | 0.12–0.18 | 0.06–0.32 | - | - | [87] |
Pure-Al | 0.7 μm | 10 g/L | 0.62 | 0.65 | 0.58 | - | - | [23] | |
6061 | 0.5–6 μm | 0.4 g/L | - | 0.12–0.6 | 0.06–0.12 | - | - | [88] | |
TC4 | Graphene | 10–20 μm | 0–6 g/L | 0.71 | 0.46 | 0.22–0.31 | - | - | [89] |
Mg-Li | 0.5 μm | 0.1 g/L | 0.41 | 0.29 | 0.11 | - | - | [90] | |
2A12 | GO | 2 μm | 2 g/L | - | 0.6–0.65 | 0.3–0.34 | - | - | [91] |
Mg-Li | - | 10 mL/L | 0.52 | 0.28 | 0.12 | - | - | [92] | |
6061 | CNT | - | 2 g/L | - | 0.68 | 0.14 | - | - | [93] |
AZ80 | - | 0–4 g/L | 0.73 | 0.45 | 0.25–0.4 | 2.72 × 103 mm3/N/m | 1.95 × 103 mm3/N/m | [94] | |
2024 | h-BN | 1 μm | 0–10 g/L | - | 0.6 | 0.4–0.6 | 1.29 × 10−3 mm3/N/m | 4.3 × 10−4 mm3/N/m | [59] |
TC4 | 1–2 μm | 2 g/L, 8 g/L | - | 0.8 | 0.4 | - | - | [95] | |
2A12 | WS2 | 2 μm | 2 g/L | - | - | 0.4 | - | - | [91] |
TC4 | Al2O3 | 10 nm | 0–15 g/L | - | 0.65 | 0.2–0.65 | 9.37 × 10−4 g/N/m | 6.19 × 10−4 g/N/m | [96] |
AZ31B | WC | 80 nm | 5 g/L | - | - | 0.14 | - | - | [97] |
TC4 | h-BN, CNT | - | 20 g/L, 1 g/L | - | 0.91 | 0.11 | - | - | [98] |
Post-Treatment | Substrate | Particle | COF | Wear Rate | Ref. | ||||
---|---|---|---|---|---|---|---|---|---|
Type | Size | Concentration | MAO Coating | Composite Self-Lubricating Coating | MAO Coating | Composite Self-Lubricating Coating | |||
IS | Pure-Ti | PTFE | - | - | 0.5–0.65 | 0.1 | 7.02 × 10−5 mm3/N/m | 1.34 × 10−5 mm3/N/m | [99] |
VI | 2024 | - | - | 0.68–0.8 | 0.11 | - | - | [100] | |
160–280 nm | - | 0.7 | 0.091–0.14 | 1.45 × 10−5 mm3/N/m | 5.1 × 10−6 mm3/N/m | [72] | |||
HT | TC6 | MoSe2 | - | - | 0.79 | 0.52 | 1.3 × 10−3 mm3/N/m | 1 × 10−3 mm3/N/m | [101] |
AZ91 | Graphite | 5–10 μm | 5 g/L | 0.3–0.34 | 0.15–0.22 | - | - | [102] | |
HT and VI | Pure-Ti | MoS2 | - | - | 0.47–0.6 | 0.1–0.2 | - | - | [105] |
6063 | - | - | 0.35 | 0.2–0.3 | 3.7–8.15 × 10−7 mm3/N/mm | 1.39–2.66 × 10−7 mm3/N/mm | [106] | ||
6063 | - | - | - | 0.22 | - | 2.94–3.82 × 10−7 mm3/N/m | [107] | ||
EPD | AL109 | MoS2 | 40 nm | 10 g/L | - | 0.45 | - | - | [103] |
Grinding and polishing | TC4 | MoS2 | 40 nm | - | 0.8 | 0.18 | - | - | [108] |
Spin coating | ZL109 | WS2 | 2 μm | - | 0.8 | 0.4 | - | - | [109] |
PECVD | 2A12 | HMDSO | - | - | 0.375 | 0.25 | 3.57 × 10−5 mm3/N/m | 2.04 × 10−6 mm3/N/m | [110] |
Sintering | TC4 | AND | - | - | 0.16–0.6 | 0.3 | - | - | [111] |
MS | TA2 | DLC | - | - | - | 0.2 | - | - | [104] |
Selective spraying | AE44 | PTFE | 120 nm | - | 1.2 | 0.2 | - | - | [112] |
Heart treatment | LY12 | PTFE | 100–170 nm | - | 0.25 | 0.13 | - | - | [113] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, R.; He, X.; Li, C.; Zhang, R.; Meng, F.; Zhang, H.; Cui, X.; Nong, Z. Processes and Properties of Self-Lubricating Coatings Fabricated on Light Alloys by Using Micro-Arc Oxidation: A Review. Crystals 2024, 14, 845. https://doi.org/10.3390/cryst14100845
Li R, He X, Li C, Zhang R, Meng F, Zhang H, Cui X, Nong Z. Processes and Properties of Self-Lubricating Coatings Fabricated on Light Alloys by Using Micro-Arc Oxidation: A Review. Crystals. 2024; 14(10):845. https://doi.org/10.3390/cryst14100845
Chicago/Turabian StyleLi, Rui, Xingyu He, Chenyu Li, Ruimeng Zhang, Fei Meng, Hongliang Zhang, Xue Cui, and Zhisheng Nong. 2024. "Processes and Properties of Self-Lubricating Coatings Fabricated on Light Alloys by Using Micro-Arc Oxidation: A Review" Crystals 14, no. 10: 845. https://doi.org/10.3390/cryst14100845
APA StyleLi, R., He, X., Li, C., Zhang, R., Meng, F., Zhang, H., Cui, X., & Nong, Z. (2024). Processes and Properties of Self-Lubricating Coatings Fabricated on Light Alloys by Using Micro-Arc Oxidation: A Review. Crystals, 14(10), 845. https://doi.org/10.3390/cryst14100845