Comparative Analysis of the Effects of Additives of Nanostructured Functional Ceramics on the Properties of Welding Electrodes
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Qazi, M.I.; Akhtar, R. Application of Taguchi Method for Optimization of Tensile Strength of Shielded Metal Arc Welding (SMAW) Process for Steel SA 516 Grade 70. Int. J. Progress. Sci. Technol. 2019, 17, 97–103. [Google Scholar]
- Omiogbemi, I.M.B.; Yawas, D.S.; Das, A.; Afolayan, M.O.; Dauda, E.T.; Kumar, R.; Gorja, S.R.; Chowdhury, S.G. Mechanical properties and corrosion behaviour of duplex stainless steel weldment using novel electrodes. Sci. Rep. 2022, 12, 22405. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, M.K.; Singh, R.P. Effect of external magnetic field on impact strength and hardness of weld of shielded metal arc welding process. Mater. Today Proc. 2021, 45, 3638–3641. [Google Scholar] [CrossRef]
- Afriansyah, Z.; Ashof, M.; Naimah, A. Comparison of SMAW and GTAW Welding Properties. MEMI 2024, 1, 48–53. [Google Scholar] [CrossRef]
- Singh, D.K. Arc Welding Processes. In Fundamentals of Manufacturing Engineering; Springer: Singapore, 2024; pp. 223–250. [Google Scholar] [CrossRef]
- Singh, R.P.; Mishra, A.; Chauhan, A.; Verma, A.K. A Review of Effect of Welding Parameters on the Structure and Properties of the Weld in Shielded Metal Arc Welding Process. In Advances in Engineering Materials; Lecture Notes in Mechanical Engineering; Springer: Singapore, 2021; pp. 229–237. [Google Scholar] [CrossRef]
- Tayier, W.; Janasekaran, S.; Fook, L.K.; Hong, T.H. The Optimization of Automated Based Shielded Metal Arc Welding Parameters on Welded Pool Geometry of Mild Steel Welded Joint Using Taguchi Technique. In Advances in Material Science and Engineering; Lecture Notes in Mechanical Engineering; Springer: Singapore, 2021; pp. 356–363. [Google Scholar] [CrossRef]
- Temitayo, O.F. Nanoparticles Modified Electrodes: Synthesis, Modification, and Characterization—A Review. World J. Nano Sci. Eng. 2022, 12, 29–62. [Google Scholar]
- Makarov, S.; Sapozhkov, S.B. Production of Electrodes for Manual Arc Welding Using Nanodisperse Materials. WASJ 2014, 29, 720–723. [Google Scholar]
- Guo, D.; Xie, G.; Luo, J. Mechanical properties of nanoparticles: Basics and applications. J. Phys. D Appl. Phys. 2014, 47, 013001. [Google Scholar] [CrossRef]
- Pasandeh, M.R.; Pouranvari, M. Nanosilica treatment enables moisture-resistant hydrophobic arc welding covered electrodes. Sci. Rep. 2023, 13, 9892. [Google Scholar] [CrossRef]
- AlIthari, A.S.; Thahab, S.M.; Al-Obbaidi, A.F. Effect of adding TiO2 nanoparticles on the impact toughness for welding joints of mild steel. Aust. J. Mech. Eng. 2020, 21, 13–26. [Google Scholar] [CrossRef]
- Dorokhov, A.S.; Aulov, V.F.; Ishkov, A.V.; Krivochurov, T.; Ivanayskiy, V.V. Investigation of the welding joints properties made by electrodes with coating comprising a boron compound. Weld. Int. 2020, 34, 138–140. [Google Scholar] [CrossRef]
- Al-Obaid, A.F.; Yasir, A.S.; Thahab, S.M. Improving Impact Toughness for Welding Joints of Steel by Adding TiO2 Nanoparticles. J. Appl. Mech. Eng. 2020, 9, 1–7. [Google Scholar] [CrossRef]
- Sapozhkov, S.B.; Burakova, E.M. The Study of Complex (Ti, Zr, Cs) Nanopowder Influencing the Effective Ionization Potential of Arc Discharge When MMA Welding. IOP Conf. Ser. Mater. 2016, 142, 012018. [Google Scholar] [CrossRef]
- Kuznetsov, P.V.; Galchenko, N.K.; Rakhmatulina, T.V.; Samartsev, V.P.; Kolesnikova, K.A.; Laptev, R.S.; Babikhina, M.N. Scanning tunnel microscopy of coatings with titan carbonitride nanoparticles and their properties. AIP Conf. Proc. 2017, 1909, 020114. [Google Scholar] [CrossRef]
- Wang, C.; Li, G. Influence of Metal Additives on the Electrical Conductivities of the Oxide Ceramics as an Electrode Material. Gen. Res. Inst. Non-Ferr. Met. 1993, 12, 126–130. [Google Scholar]
- Sampath, K. Analysis of a High-Strength Steel SMAW Database. Weld. J. 2021, 100, 410–420. [Google Scholar] [CrossRef]
- Il’Yaschenko, D.P.; Chebotarev, I.; Sapozhkov, S.B. Characteristics of droplet transfer of electrode metal during MMA depending on the chemical composition of the material of the rod of the coated electrode. Mater. Sci. Eng. 2020, 939, 012028. [Google Scholar] [CrossRef]
- Mahajan, S.; Chhibber, R. Design and Development of Shielded Metal Arc Welding (SMAW) Electrode Coatings Using a CaO-CaF2 -SiO2 and CaO-SiO2 -Al2O3 Flux System. TMS 2019, 71, 2435–2444. [Google Scholar] [CrossRef]
- Okamoto, M.; Arakawa, H.; Oohashi, M.; Ogihara, S. Effect of Microstructure on Thermal Conductivity of AlN Ceramics. J. Ceram. Soc. Jpn. 1989, 97, 1478–1485. [Google Scholar] [CrossRef]
- Li, Y.; Yin, J.; Haibo, W.; Lu, P.; Yan, Y.; Liu, X.; Huang, Z.; Jiang, D. High thermal conductivity in pressureless densified SiC ceramics with ultra-low contents of additives derived from novel boron–carbon sources. J. Eur. Ceram. Soc. 2014, 34, 2591–2595. [Google Scholar] [CrossRef]
- Miao, Z.; Liu, Y.; Li, X.; Sui, T.; Su, D.; Ji, H. Microstructure evolution of Si3N4 ceramics with high thermal conductivity by using Y2O3 and MgSiN2 as sintering additives. Ceram. Int. 2023, 49, 26331–26337. [Google Scholar] [CrossRef]
- Saidov, R.M.; Rakhimov, R.K.; Yusupov, B.D.; Kholdorov, M.K. Efficiency of drying and calcining welding electrodes in fur-naces using radiation from nanostructured functional ceramics. Comput. Nanotechnol. 2020, 2, 64–70. [Google Scholar] [CrossRef]
- Saidov, R.M.; Rakhimov, R.K.; Rakhimova, F.M. Results of using functional ceramics in the composition of the Fe3O4–CaO2–TiO2 slag system for coating welding electrodes. Comput. Nanotechnol. 2022, 9, 53–59. [Google Scholar] [CrossRef]
- Rakhimov, R.K.; Elena, V.K. Radiation Emitting Ceramic Materials and Devices Containing Same. U.S. Patent 5,350,927, 27 September 1994. [Google Scholar]
- Rakhimov, R.K.; Elena, V.K. Treatment of Materials with Infrared Radiation. U.S. Patent 5,472,720, 5 December 1995. [Google Scholar]
- Saidov, R.M.; Rakhimov, R.K.; Kamel, T. The Effect of Nanostructured Functional Ceramics Additives on the Properties of Welding Electrodes. Metals 2023, 13, 1849. [Google Scholar] [CrossRef]
- Marco, A.; Sergio, S.; Antonio, P.; Salvatore, S.; Giuseppe, D.; Alessio, S.; Mauro, F.L.R.; Efrem, C. Environmentally Friendly Photothermal Membranes for Halite Recovery from Reverse Osmosis Brine via Solar-Driven Membrane Crystallization. Membranes 2024, 14, 87. [Google Scholar] [CrossRef] [PubMed]
- Rakhimov, R.K.; Yermakov, V.P.; Rakhimov, M.R. Synthesis of Materials by the Radiation Method and Their Application. Appl. Sol. Energy 2022, 58, 165–171. [Google Scholar] [CrossRef]
- Litvinova, T.R.; Elsukov, S.K.; Antipov, I.S.; Korolev, M.P.; Priyatkin, D.V.; Bessonov, O.V.; Egorov, I.V. Study of welding and technological properties of coated electrodes for welding low-alloy high-strength steels. Int. J. Sci. Res. 2017, 3, 71–75. [Google Scholar]
- Gevorkyan, V.G. Basics of Welding; Higher School: Moscow, Russia, 1975; p. 168. [Google Scholar]
- Saidov, R.M.; Song, Y.V.; Rakhimova, F.M.; Abralov, M.M. Influence of the basicity index on welding electrode coatings on their welding and technological properties. Comput. Nanotechnol. 2020, 7, 13. [Google Scholar] [CrossRef]
- Samprit, C.; Jeffrey, S. Handbook of Regression Analysis, 1st ed.; John Wiley & Sons: Hoboken, NJ, USA, 2012; pp. 1–21. [Google Scholar]
- Garcia-Rodriguez, A.; Gomez Perez, K.R.; Quintata Pujol, R. Study of arc combustion processes and electrode metal transfer during welding with coated electrodes E6013. Auto. Weld. 2012, 6, 18–24. [Google Scholar]
- Saraev, Y.N.; Chinakhov, D.A.; Ilyashchenko, D.I.; Kiselev, A.S.; Gordynets, A.S. Investigation of the stability of melting and electrode metal transfer in consumable electrode arc welding using power sources with different dynamic characteristics. Weld. Int. 2017, 31, 784–790. [Google Scholar] [CrossRef]
Additives | FeO% | SiO2% | CaO% | CrO3% | AlO% | MgO% | CuO% |
---|---|---|---|---|---|---|---|
Percentages (%) | 35 | 28 | 15 | 13.5 | 3.5 | 3 | 2 |
The metal melting coefficient | The electrode fused quantity coefficient | |
The surfacing coefficient | The surfacing coefficient | |
The loss coefficient | Losses are due to spattering and oxidation. |
No. | Amount of ZKHM Additive in MR-3 Electrode Coating, % | External Aspects of SWAM Joints Performed with ZKHM Additive | Amount of ZB-1 Additive in MR-3 Electrode Coating, % | External Aspects of SWAM Joints Performed with ZB-1 Additive |
---|---|---|---|---|
1 | 1 | 1 | ||
2 | 2 | 2 | ||
3 | 4 | 4 | ||
4 | 8 | 8 |
Welding Electrode Brand and NFCs | Additive NFC Proportions in MR-3 Coating (%) | Breaking Length of Arc of Welding Electrode (mm) | Size of Visor at End of Electrode (mm) | Metal Melting Coefficient (g/A∙h) | Surfacing Coefficient (g/A∙h) | Loss Coefficient for Waste and Spatter (% ) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Average | Standard Deviation | Average | Standard Deviation | Average | Standard Deviation | Average | Standard Deviation | Average | Standard Deviation | ||
MR-3 | 0 | 8.2 | 0.82 | 3.2 | 0.46 | 6.22 | 0.87 | 5.41 | 0.88 | 12.90 | 0.50 |
ZKHM | 1 | 9.1 | 0.95 | 2.6 | 0.26 | 6.82 | 0.5 | 6.10 | 0.46 | 10.60 | 0.40 |
2 | 5.9 | 0.95 | 2.7 | 0.36 | 6.63 | 0.75 | 5.85 | 0.84 | 12.00 | 0.56 | |
4 | 7.9 | 0.78 | 2.9 | 0.20 | 6.83 | 0.42 | 6.00 | 0.41 | 12.20 | 0.44 | |
8 | 7.5 | 0.82 | 3.1 | 0.44 | 8.22 | 0.50 | 7.17 | 0.54 | 12.80 | 0.70 | |
ZB-1 | 1 | 8.4 | 0.75 | 3.1 | 0.60 | 6.01 | 0.35 | 5.62 | 0.37 | 6.40 | 0.75 |
2 | 7.0 | 0.56 | 2.6 | 0.44 | 5.90 | 0.55 | 5.33 | 0.46 | 9.20 | 0.75 | |
4 | 7.6 | 0.46 | 2.6 | 0.26 | 6.16 | 0.34 | 5.59 | 0.48 | 9.30 | 0.50 | |
8 | 7.0 | 0.60 | 2.4 | 0.25 | 5.92 | 0.64 | 5.50 | 0.46 | 6.90 | 0.66 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mannapovitch, S.R.; Khalidov, R.R.; Touileb, K. Comparative Analysis of the Effects of Additives of Nanostructured Functional Ceramics on the Properties of Welding Electrodes. Crystals 2024, 14, 1082. https://doi.org/10.3390/cryst14121082
Mannapovitch SR, Khalidov RR, Touileb K. Comparative Analysis of the Effects of Additives of Nanostructured Functional Ceramics on the Properties of Welding Electrodes. Crystals. 2024; 14(12):1082. https://doi.org/10.3390/cryst14121082
Chicago/Turabian StyleMannapovitch, Saidov Rustam, Rakhimov Rustam Khalidov, and Kamel Touileb. 2024. "Comparative Analysis of the Effects of Additives of Nanostructured Functional Ceramics on the Properties of Welding Electrodes" Crystals 14, no. 12: 1082. https://doi.org/10.3390/cryst14121082
APA StyleMannapovitch, S. R., Khalidov, R. R., & Touileb, K. (2024). Comparative Analysis of the Effects of Additives of Nanostructured Functional Ceramics on the Properties of Welding Electrodes. Crystals, 14(12), 1082. https://doi.org/10.3390/cryst14121082