Wood-Derived Graphite: A Sustainable and Cost-Effective Material for the Wide Range of Industrial Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Graphite
2.3. Characterization
3. Results and Discussion
3.1. Structural Properties
3.2. Functional Group Investigation
3.3. Raman Spectra
3.4. Morphological Analysis (FE-SEM and HR-TEM)
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Halkos, G.E.; Gkampoura, E.-C. Reviewing Usage, Potentials, and Limitations of Renewable Energy Sources. Energies 2020, 13, 2906. [Google Scholar] [CrossRef]
- Banaś, J.; Utnik-Banaś, K. Using Timber as a Renewable Resource for Energy Production in Sustainable Forest Management. Energies 2022, 15, 2264. [Google Scholar] [CrossRef]
- Surup, G.R.; Trubetskaya, A.; Tangstad, M. Charcoal as an Alternative Reductant in Ferroalloy Production: A Review. Processes 2020, 8, 1432. [Google Scholar] [CrossRef]
- Kalak, T. Potential Use of Industrial Biomass Waste as a Sustainable Energy Source in the Future. Energies 2023, 16, 1783. [Google Scholar] [CrossRef]
- Jara, A.D.; Betemariam, A.; Woldetinsae, G.; Kim, J.Y. Purification, application and current market trend of natural graphite: A review. Int. J. Min. Sci. Technol. 2019, 29, 671. [Google Scholar] [CrossRef]
- Wang, Y.-M.; Zhang, C.-H. Study on Structural Evolution of Synthetic Graphite Derived from Lignite Prepared by High Temperature–High Pressure Method. Crystals 2022, 12, 464. [Google Scholar] [CrossRef]
- Nyathi, M.S.; Clifford, C.B.; Schobert, H.H. Characterization of graphitic materials prepared from different rank Pennsylvania anthracites. Fuel 2013, 114, 244–250. [Google Scholar] [CrossRef]
- Pierson, H.O. Graphite Structure and Properties. In Handbook of Carbon, Graphite, Diamonds and Fullerenes; William Andrew Publishing Oxford: Oxford, UK, 1993; pp. 43–69. [Google Scholar]
- Wang, X.; Chen, Y.; Yu, C.; Ding, J.; Guo, D.; Deng, C. Preparation and application of ZrC-coated flake graphite for Al2O3-C refractories. J. Alloys Compd. 2019, 788, 739–747. [Google Scholar] [CrossRef]
- Alidad, A.; Navik, R.; Gai, Y.; Zhao, Y. Production of pristine graphene quantum dots from graphite by a shear-mixer in supercritical CO2. Chem. Phys. Lett. 2018, 710, 64–69. [Google Scholar] [CrossRef]
- Wu, Y.; Liu, X.; Xia, D.; Sun, Q.; Yu, D.; Sun, S.; Liu, X.; Teng, Y.; Zhang, W.; Zhao, X. Synthesis of few-layer N-doped graphene from expandable graphite with melamine and its application in supercapacitors. Chinese Chem. Lett. 2020, 31, 559–564. [Google Scholar] [CrossRef]
- Hölscher, F.; Trümper, P.-R.; Junger, I.J.; Schwenzfeier-Hellkamp, E.; Ehrmann, A. Application methods for graphite as catalyzer in dye-sensitized solar cells. Optik 2019, 178, 1276–1279. [Google Scholar] [CrossRef]
- Chung, S.; Shin, D.; Choun, M.; Kim, J.; Yang, S.; Choi, M.; Kim, J.W.; Lee, J. Improved water management of Pt/C cathode modified by graphitized carbon nanofiber in proton exchange membrane fuel cell. J. Power Sources 2018, 399, 350–356. [Google Scholar] [CrossRef]
- Jian, Z.; Piao, Z.Y.; Liu, S.Y.; Su, S.W.; Deng, L.J. Investigation of wear behavior of graphite coating on aluminum piston skirt of automobile engine. Eng. Fail. Anal. 2019, 97, 408–415. [Google Scholar] [CrossRef]
- Dai, T.; Yang, L.; Ning, X.; Zhang, D.; Narayan, R.L.; Li, J.; Shan, Z. A low-cost intermediate temperature Fe/Graphite battery for grid-scale energy storage. Energy Storage Mater. 2020, 25, 801–810. [Google Scholar] [CrossRef]
- Ridgway, P.; Zheng, H.; Bello, A.F.; Song, X.; Xun, S.; Chong, J.; Vincent, B. Comparison of cycling performance of lithium ion cell anode graphites. J. Electrochem. Soc. 2012, 159, 520–524. [Google Scholar] [CrossRef]
- Lee, S.-M.; Kang, D.-S.; Roh, J.-S. Bulk Graphite: Materials and Manufacturing Process. Carbon Lett. 2015, 16, 135–146. [Google Scholar] [CrossRef]
- Mochida, I.; Ohtsubo, R.; Takeshita, K.; Marsh, H. Catalytic graphitization of nongraphitizable carbon by chromium and manganese oxides. Carbon 1980, 18, 117–123. [Google Scholar] [CrossRef]
- Li, S.S.; Wang, J.K.; Zhu, Q.; Zhao, X.W.; Zhang, H.J. Fabrication of Graphitic Carbon Spheres via a Hydrothermal Carbonization Combined Catalytic Graphitization Method Using Cobalt as Catalysts. Solid State Phenom. 2018, 281, 807–812. [Google Scholar] [CrossRef]
- Chen, C.; Sun, K.; Wang, A.; Wang, S.; Jiang, J. Catalytic Graphitization of Cellulose Using Nickel as Catalyst. BioResources 2018, 13, 3165–3176. [Google Scholar] [CrossRef]
- Barnakov, C.N.; Khokhlova, G.P.; Popova, A.N.; Sozinov, S.A.; Ismagilov, Z.R. XRD characterization of the structure of graphites and carbon materials obtained by the low-temperature graphitization of coal tar pitch. Eurasian Chem. J. 2015, 17, 87–93. [Google Scholar] [CrossRef]
- Thompson, E.; Danks, A.E.; Bourgeois, L.; Schnepp, Z. Iron-catalyzed graphitization of biomass. Green Chem. 2015, 17, 551–556. [Google Scholar] [CrossRef]
- Motozuka, S.; Tagaya, M.; Ogawa, N.; Fukui, K.; Nishikawa, M.; Shiba, K.; Uehara, T.; Kobayashi, T. Effective preparation of graphite nanoparticles using mechanochemical solid-state reactions. Solid State Commun. 2014, 190, 28–32. [Google Scholar] [CrossRef]
- Piras, C.C.; Fernández-Prieto, S.; De Borggraeve, W.M. Ball milling: A green technology for the preparation and functionalisation of nanocellulose derivatives. Nanoscale Adv. 2019, 1, 937–947. [Google Scholar] [CrossRef]
- Gómez-Martín, A.; Rutter, M.; Placke, T.; Martínez-Fernández, J.; Ramírez-Rico, J. Iron-catalyzed graphitic carbon materials from biomass resources as anodes for lithium-ion batteries. Chem. Sus. Chem. 2018, 11, 2776–2787. [Google Scholar] [CrossRef] [PubMed]
- Mandal, D.; Vinjamur, M.; Sathiyamoorthy, D. Hydrodynamics of beds of small particles in the voids of coarse particles. Powder Technol. 2013, 235, 256–262. [Google Scholar] [CrossRef]
- Park, Y.-N.; Lee, J.J.; Kwac, L.-K.; Ryu, S.-K.; Kim, H.-G. Graphitization of Oak tree-based White Charcoals by High Temperature Heat Treatment. Korean J. Chem. Eng. 2024, 41. [Google Scholar] [CrossRef]
- Fogg, J.L.; Putman, K.J.; Zhang, T.; Lei, Y.; Terrones, M.; Harris, P.J.F.; Marks, N.A.; Suarez-Martinez, I. Catalysis-free transformation of non-graphitising carbons into highly crystalline graphite. Commun. Mater. 2020, 1, 47. [Google Scholar] [CrossRef]
- Nakayasu, Y.; Goto, Y.; Katsuyama, Y.; Itoh, T.; Watanabe, M. Highly crystalline graphite-like carbon from wood via low-temperature catalytic graphitization. Carbon Trends 2022, 8, 100190. [Google Scholar] [CrossRef]
- Hanif, M.A.; Kim, Y.S.; Ameen, S.; Kim, H.G.; Kwac, L.K. Boosting the Visible Light Photocatalytic Activity of ZnO through the Incorporation of N-Doped for Wastewater Treatment. Coatings 2022, 12, 579. [Google Scholar] [CrossRef]
- Zheng, H.; Xu, R.; Zhang, J.; Daghagheleh, O.; Schenk, J.; Li, C.; Wang, W. A Comprehensive Review of Characterization Methods for Metallurgical Coke Structures. Materials 2021, 15, 174. [Google Scholar] [CrossRef]
- Li, S.K.; Zhu, Y.M.; Wang, Y.; Liu, J. The Chemical and Alignment Structural Properties of Coal: Insights from Raman, Solid-State (13)C NMR, XRD, and HRTEM Techniques. ACS Omega 2021, 6, 11266–11279. [Google Scholar] [CrossRef] [PubMed]
- Deraman, M.; Sazali, N.E.S.; Hanappi, M.F.Y.M.; Tajuddin, N.S.M.; Hamdan, E.; Suleman, M.; Othman, M.A.R.; Omar, R.; Hashim, M.A.; Basri, N.H.; et al. Graphene/semicrystalline-carbon derived from amylose films for supercapacitor application. J. Phys. Conf. Ser. 2016, 739, 12085. [Google Scholar] [CrossRef]
- Destyorini, F.; Irmawati, Y.; Hardiansyah, A.; Widodo, H.; Yahya, I.N.D.; Indayaningsih, N.; Yudianti, R.; Hsu, Y.-I.; Uyama, H. Formation of nanostructured graphitic carbon from coconut waste via low-temperature catalytic graphitisation. Eng. Sci. Technol. Int. J. 2021, 24, 514–523. [Google Scholar] [CrossRef]
- Zhao, C.-X.; Niu, C.-Y.; Qin, Z.-J.; Ren, X.; Wang, J.-T.; Cho, J.-H.; Jia, Y. H18 carbon: A new metallic phase with sp2-sp3 hybridized bonding network. Sci. Rep. 2016, 6, 21879. [Google Scholar] [CrossRef]
- Koçanalı, A.; Apaydın Varol, E. An Experimental Study on the Electrical and Thermal Performance of Reduced Graphene Oxide Coated Cotton Fabric. Int. J. Energy Res. 2021, 45, 12915–12927. [Google Scholar] [CrossRef]
- Hanif, M.A.; Shin, H.; Chun, D.; Kim, H.G.; Kwac, L.K.; Han, S.-W.; Kang, S.-S.; Kim, Y.S. Development of Highly Ultraviolet-Protective Polypropylene/TiO2 Nonwoven Fiber. J. Compos. Sci. 2024, 8, 86. [Google Scholar] [CrossRef]
- Sadezky, A.; Muckenhuber, H.; Grothe, H.; Niessner, R.; Poschl, U. Raman micro spectroscopy of soot and related carbonaceous materials: Spectral analysis and structural information. Carbon 2005, 43, 1731–1742. [Google Scholar] [CrossRef]
- Ramirez-Rico, J.; Gutierrez-Pardo, A.; Martinez-Fernandez, J.; Popov, V.V.; Orlova, T.S. Thermal conductivity of Fe graphitized wood derived carbon. Mater. Des. 2016, 99, 528–534. [Google Scholar] [CrossRef]
Samples | d002 (nm) | d100 (nm) | Lc (nm) | La (nm) | Lc/d002 |
---|---|---|---|---|---|
H1000 | 0.393 | 0.208 | 0.763 | 2.001 | 1.943 |
H1400 | 0.384 | 0.207 | 0.894 | 2.365 | 2.330 |
C1000 | 0.337 | 0.207 | 8.397 | 3.065 | 24.949 |
C1400 | 0.339 | 0.207 | 9.907 | 3.477 | 29.239 |
Commercial graphite (CG) | 0.338 | 0.214 | 22.849 | 25.241 | 64.478 |
[32] | 0.348 | 0.205 | 2.090 | 1.233 | 6.0 |
[33] | 0.394 | 0.210 | 2.548 | 5.328 | 6.5 |
[34] | 0.337 | - | 46.36 | - | 137.44 |
Samples | d002 (nm) | d100 (nm) | Lc (nm) | La (nm) | Lc/d002 |
---|---|---|---|---|---|
H1800 | 0.336 | 0.207 | 23.931 | 5.866 | 71.130 |
H2000 | 0.338 | 0.212 | 24.555 | 7.554 | 72.667 |
H2400 | 0.339 | 0.211 | 22.997 | 6.126 | 67.882 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, Y.S.; Hanif, M.A.; Song, H.; Kim, S.; Cho, Y.; Ryu, S.-K.; Kim, H.G. Wood-Derived Graphite: A Sustainable and Cost-Effective Material for the Wide Range of Industrial Applications. Crystals 2024, 14, 309. https://doi.org/10.3390/cryst14040309
Kim YS, Hanif MA, Song H, Kim S, Cho Y, Ryu S-K, Kim HG. Wood-Derived Graphite: A Sustainable and Cost-Effective Material for the Wide Range of Industrial Applications. Crystals. 2024; 14(4):309. https://doi.org/10.3390/cryst14040309
Chicago/Turabian StyleKim, Young Soon, Md. Abu Hanif, Hyeonjin Song, Sungeun Kim, Yonu Cho, Seung-Kon Ryu, and Hong Gun Kim. 2024. "Wood-Derived Graphite: A Sustainable and Cost-Effective Material for the Wide Range of Industrial Applications" Crystals 14, no. 4: 309. https://doi.org/10.3390/cryst14040309
APA StyleKim, Y. S., Hanif, M. A., Song, H., Kim, S., Cho, Y., Ryu, S. -K., & Kim, H. G. (2024). Wood-Derived Graphite: A Sustainable and Cost-Effective Material for the Wide Range of Industrial Applications. Crystals, 14(4), 309. https://doi.org/10.3390/cryst14040309