Optical and Optoelectrical Properties of Ternary Chalcogenide CuInS2/TiO2 Nanocomposite Prepared by Mechanochemical Synthesis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Mechanochemical Synthesis of CuInS2/TiO2 Nanocomposite
2.3. Characterization Techniques
3. Results and Discussion
3.1. Structural and Microstructural Characterization
3.2. Surface and Morphological Characterization
3.3. Optical Properties
3.4. Optoelectrical Properties
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Klenk, R.; Klaer, J.; Koble, C.; Mainz, R.; Merdes, S.; Rodriguez-Alvarez, H.; Scheer, R.; Schock, H.W. Development of CuInS2-based solar cells and modules. Sol. Energy Mater. Sol. Cells 2011, 95, 1441–1445. [Google Scholar] [CrossRef]
- Giri, R.K.; Chaki, S.H.; Dave, M.S.; Bharucha, S.R.; Khimani, A.J.; Kannaujiya, R.M.; Deshpande, M.P.; Solanki, M.B. First principle insights and experimental investigations of the electronic and optical properties of CuInS2 single crystals. Mater. Adv. 2023, 4, 3246–3256. [Google Scholar] [CrossRef]
- Sun, W.T.; Yu, Y.; Pan, H.Y.; Gao, X.F.; Chen, Q.; Peng, L.M. CdS quantum dots sensitized TiO2 nanotube-array photoelectrodes. J. Am. Chem. Soc. 2008, 130, 1124–1125. [Google Scholar] [CrossRef]
- Kongkanand, A.; Tvrdy, K.; Takechi, K.; Kuno, M.; Kamat, P.V. Quantum dot solar cells. Tuning photoresponse through size and shape control of CdSe-TiO2 architecture. J. Am. Chem. Soc. 2008, 130, 4007–4015. [Google Scholar] [CrossRef]
- Kang, Q.; Liu, S.H.; Yang, L.X.; Cai, Q.Y.; Grimes, C.A. Fabrication of PbS Nanoparticle-Sensitized TiO2 Nanotube Arrays and Their Photoelectrochemical Properties. ACS Appl. Mater. Interfaces 2011, 3, 746–749. [Google Scholar] [CrossRef] [PubMed]
- Yue, W.J.; Pan, Y.W.; Xie, Z.W.; Yang, X.; Hu, L.L.; Hong, L.R.; Tong, Y.F.; Cheng, Q.Q. Different depositing amount of CuInS2 on TiO2 nanoarrays for polymer/CuInS2-TiO2 solar cells. Mater. Sci. Semicond. Process. 2015, 40, 257–261. [Google Scholar] [CrossRef]
- Enesca, A.; Yamaguchi, Y.; Terashima, C.; Fujishima, A.; Nakata, K.; Duta, A. Enhanced UV-Vis photocatalytic performance of the CuInS2/TiO2/SnO2 hetero-structure for air decontamination. J. Catal. 2017, 350, 174–181. [Google Scholar] [CrossRef]
- Li, T.T.; Li, X.Y.; Zhao, Q.D.; Shi, Y.; Teng, W. Fabrication of n-type CuInS2 modified TiO2 nanotube arrays heterostructure photoelectrode with enhanced photoelectrocatalytic properties. Appl. Catal. B-Environ. 2014, 156, 362–370. [Google Scholar] [CrossRef]
- Shen, F.Y.; Que, W.X.; Liao, Y.L.; Yin, X.T. Photocatalytic Activity of TiO2 Nanoparticles Sensitized by CuInS2 Quantum Dots. Ind. Eng. Chem. Res. 2011, 50, 9131–9137. [Google Scholar] [CrossRef]
- Nanu, M.; Reijnen, L.; Meester, B.; Goossens, A.; Schoonman, J. CuInS2-TiO2 heterojunctions solar cells obtained by atomic layer deposition. Thin Solid Film. 2003, 431, 492–496. [Google Scholar] [CrossRef]
- Li, T.T.; Li, X.Y.; Zhao, Q.D.; Teng, W. Preparation of CuInS2/TiO2 nanotube heterojunction arrays electrode and investigation of its photoelectrochemical properties. Mater. Res. Bull. 2014, 59, 227–233. [Google Scholar] [CrossRef]
- Chen, B.F.; Niu, W.Z.; Lou, Z.R.; Ye, Z.Z.; Zhu, L.P. Improving the photovoltaic performance of the all-solid-state TiO2 NR/CulnS2 solar cell by hydrogen plasma treatment. Nanotechnology 2018, 29, 275402. [Google Scholar] [CrossRef]
- Fu, B.W.; Deng, C.; Yang, L. Efficiency Enhancement of Solid-State CuInS2 Quantum Dot-Sensitized Solar Cells by Improving the Charge Recombination. Nanoscale Res. Lett. 2019, 14, 198. [Google Scholar] [CrossRef]
- Jones, W.; Eddleston, M.D. Introductory Lecture: Mechanochemistry, a versatile synthesis strategy for new materials. Faraday Discuss. 2014, 170, 9–34. [Google Scholar] [CrossRef]
- Colacino, E.; Isoni, V.; Crawford, D.; Garcia, F. Upscaling Mechanochemistry: Challenges and Opportunities for Sustainable Industry. Trends Chem. 2021, 3, 335–339. [Google Scholar] [CrossRef]
- Kostova, N.; Dutkova, E. Mechanochemical synthesis and properties of ZnS/TiO2 composites. Bulg. Chem. Commun. 2016, 48, 161–166. [Google Scholar]
- Dutkova, E.; Balaz, M.; Daneu, N.; Tatykayev, B.; Karakirova, Y.; Velinov, N.; Kostova, N.; Briancin, J.; Balaz, P. Properties of CuFeS2/TiO2 Nanocomposite Prepared by Mechanochemical Synthesis. Materials 2022, 15, 6913. [Google Scholar] [CrossRef]
- Dutková, E.; Sayagues, M.J.; Briančin, J.; Zorkovská, A.; Bujňáková, Z.; Kováč, J.; Kováč, J.J.; Baláž, P.; Ficeriová, J. Synthesis and characterization of CuInS2 nanocrystalline semiconductor prepared by high-energy milling. J. Mater. Sci. 2016, 51, 1978–1984. [Google Scholar] [CrossRef]
- Coelho, A.A. TOPAS and TOPAS-Academic: An optimization program integrating computer algebra and crystallographic objects written in C plus. J. Appl. Crystallogr. 2018, 51, 210–218. [Google Scholar] [CrossRef]
- Evans, J.S.O. Advanced Input Files & Parametric Quantitative Analysis Using Topas. Mater. Sci. Forum 2010, 651, 1–9. [Google Scholar] [CrossRef]
- Baláž, P. Mechanochemistry in Nanoscience and Minerals Engineering; Springer: Berlin/Heidelberg, Germany, 2008; 413p. [Google Scholar]
- Tuschel, D. Molecular Spectroscopy Workbench Raman Spectroscopy and Polymorphism. Spectroscopy 2019, 34, 10–21. [Google Scholar]
- Gorai, S.; Bhattacharya, S.; Liarokapis, E.; Lampakis, D.; Chaudhuri, S. Morphology controlled solvothermal synthesis of copper indium sulphide powder and its characterization. Mater. Lett. 2005, 59, 3535–3538. [Google Scholar] [CrossRef]
- Alvarez-Garcia, J.; Barcones, B.; Perez-Rodriguez, A.; Romano-Rodriguez, A.; Morante, J.R.; Janotti, A.; Wei, S.H.; Scheer, R. Vibrational and crystalline properties of polymorphic CuInC2 (C = Se,S) chalcogenides. Phys. Rev. B 2005, 71, 054303. [Google Scholar] [CrossRef]
- Pawbake, A.; Waykar, R.; Jadhavar, A.; Kulkarni, R.; Waman, V.; Date, A.; Late, D.; Pathan, H.; Jadkar, S. Wide band gap and conducting tungsten carbide(WC) thin films prepared by hot wire chemical vapor deposition(HW-CVD) method. Mater. Lett. 2016, 183, 315–317. [Google Scholar] [CrossRef]
- Xu, F.Y.; Zhang, J.J.; Zhu, B.C.; Yu, J.G.; Xu, J.S. CuInS2 sensitized TiO2 hybrid nanofibers for improved photocatalytic CO2 reduction. Appl. Catal. B-Environ. 2018, 230, 194–202. [Google Scholar] [CrossRef]
- Balaz, M.; Dutkova, E.; Bujnakova, Z.; Tothova, E.; Kostova, N.G.; Karakirova, Y.; Briancin, J.; Kanuchova, M. Mechanochemistry of copper sulfides: Characterization, surface oxidation and photocatalytic activity. J. Alloys Compd. 2018, 746, 576–582. [Google Scholar] [CrossRef]
- Xie, B.B.; Hu, B.B.; Jiang, L.F.; Li, G.; Du, Z.L. The phase transformation of CuInS2 from chalcopyrite to wurtzite. Nanoscale Res. Lett. 2015, 10, 86. [Google Scholar] [CrossRef]
- Makula, P.; Pacia, M.; Macyk, W. How To Correctly Determine the Band Gap Energy of Modified Semiconductor Photocatalysts Based on UV-Vis Spectra. J. Phys. Chem. Lett. 2018, 9, 6814–6817. [Google Scholar] [CrossRef]
- Peng, Z.Y.; Liu, Y.L.; Shu, W.; Chen, K.Q.; Chen, W. Synthesis of Various Sized CuInS2 Quantum Dots and Their Photovoltaic Properties as Sensitizers for TiO2 Photoanodes. Eur. J. Inorg. Chem. 2012, 2012, 5239–5244. [Google Scholar] [CrossRef]
- Zhou, X.F.; Lu, J.; Jiang, J.J.; Li, X.B.; Lu, M.N.; Yuan, G.T.; Wang, Z.S.; Zheng, M.; Seo, H.J. Simple fabrication of N-doped mesoporous TiO2 nanorods with the enhanced visible light photocatalytic activity. Nanoscale Res. Lett. 2014, 9, 34. [Google Scholar] [CrossRef]
- Leach, A.D.P.; Macdonald, J.E. Optoelectronic Properties of CuInS2 Nanocrystals and Their Origin. J. Phys. Chem. Lett. 2016, 7, 572–583. [Google Scholar] [CrossRef]
- Omata, T.; Nose, K.; Otsuka-Yao-Matsuo, S. Size dependent optical band gap of ternary I-III-VI2 semiconductor nanocrystals. J. Appl. Phys. 2009, 105, 073106. [Google Scholar] [CrossRef]
- Ye, M.D.; Gong, J.J.; Lai, Y.K.; Lin, C.J.; Lin, Z.Q. High-Efficiency Photoelectrocatalytic Hydrogen Generation Enabled by Palladium Quantum Dots-Sensitized TiO2 Nanotube Arrays. J. Am. Chem. Soc. 2012, 134, 15720–15723. [Google Scholar] [CrossRef]
- Pandikumar, A.; Ramaraj, R. TiO2-Au nanocomposite materials modified photoanode with dual sensitizer for solid-state dye-sensitized solar cell. J. Renew. Sustain. Energy 2013, 5, 043101. [Google Scholar] [CrossRef]
- Ueng, H.Y.; Hwang, H.L. The Defect Structure of CuInS2. part I: Intrinsic Defects. J. Phys. Chem. Solids 1989, 50, 1297–1305. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dutkova, E.; Baláž, M.; Kováč, J.; Daneu, N.; Kashimbetova, A.; Briančin, J.; Kováč, J., Jr.; Kováčová, S.; Čelko, L. Optical and Optoelectrical Properties of Ternary Chalcogenide CuInS2/TiO2 Nanocomposite Prepared by Mechanochemical Synthesis. Crystals 2024, 14, 324. https://doi.org/10.3390/cryst14040324
Dutkova E, Baláž M, Kováč J, Daneu N, Kashimbetova A, Briančin J, Kováč J Jr., Kováčová S, Čelko L. Optical and Optoelectrical Properties of Ternary Chalcogenide CuInS2/TiO2 Nanocomposite Prepared by Mechanochemical Synthesis. Crystals. 2024; 14(4):324. https://doi.org/10.3390/cryst14040324
Chicago/Turabian StyleDutkova, Erika, Matej Baláž, Jaroslav Kováč, Nina Daneu, Adelia Kashimbetova, Jaroslav Briančin, Jaroslav Kováč, Jr., Soňa Kováčová, and Ladislav Čelko. 2024. "Optical and Optoelectrical Properties of Ternary Chalcogenide CuInS2/TiO2 Nanocomposite Prepared by Mechanochemical Synthesis" Crystals 14, no. 4: 324. https://doi.org/10.3390/cryst14040324