Mineralization of Octacalcium Phosphate under Magnetic Field
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Physical Phase Analysis of Crystals in Gel Media
3.2. Effect of External Magnetic Field on the Size and Shape of OCP
3.3. Effect of External Magnetic Field on the Rate of OCP Directional Growth
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Safronova, T.V.; Putlyaev, V.I.; Filippov, Y.Y.; Vladimirova, S.A.; Zuev, D.M.; Cherkasova, G.S. Synthesis of Calcium-Phosphate Powder from Calcium Formiate and Ammonium Hydrophosphate for Obtaining Biocompatible Resorbable Biphase Ceramic Materials. Glass Ceram. 2017, 74, 185–190. [Google Scholar] [CrossRef]
- Chocholata, P.; Kulda, V.; Babuska, V. Fabrication of Scaffolds for Bone-Tissue Regeneration. Materials 2019, 12, 25. [Google Scholar] [CrossRef] [PubMed]
- Manohar, S.S.; Das, C.; Kakati, V. Bone Tissue Engineering Scaffolds: Materials and Methods. 3D Print. Addit. Manuf. 2024, 11, 347–362. [Google Scholar] [CrossRef] [PubMed]
- Musskaya, O.N.; Kulak, A.I.; Krut’ko, V.K.; Lesnikovich, Y.A.; Kazbanov, V.V.; Zhitkova, N.S. Preparation of Bioactive Mesoporous Calcium Phosphate Granules. Inorg. Mater. 2018, 54, 117–124. [Google Scholar] [CrossRef]
- Czikó, M.; Bog, E.S.; Diudea, M.V.; Barabás, R. Research on Hydroxyapatite Based Composite Materials. Rev. Roum. Chim. 2014, 59, 353–357. [Google Scholar]
- Macuvele, D.L.P.; Nones, J.; Matsinhe, J.V.; Lima, M.M.; Soares, C.; Fiori, M.A.; Riella, H.G. Advances in ultra high molecular weight polyethylene/hydroxyapatite composites for biomedical applications: A brief review. Mater. Sci. Eng. C 2017, 76, 1248–1262. [Google Scholar] [CrossRef]
- Ding, X.X.; Li, A.M.; Yang, F.S.; Sun, K.N.; Sun, X.N. β-tricalcium phosphate and octacalcium phosphate composite bioceramic material for bone tissue engineering. J. Biomater. Appl. 2020, 34, 1294–1299. [Google Scholar] [CrossRef] [PubMed]
- Yokoi, T.; Goto, T.; Kato, T.; Takahashi, S.; Nakamura, J.; Sekino, T.; Ohtsuki, C.; Kawashita, M. Hydroxyapatite Formation from Octacalcium Phosphate and Its Related Compounds: A Discussion of the Transformation Mechanism. Bull. Chem. Soc. Jpn. 2020, 93, 701–707. [Google Scholar] [CrossRef]
- Gemelli, E.; Resende, C.X.; Soares, G.D.D. Nucleation and growth of octacalcium phosphate on treated titanium by immersion in a simplified simulated body fluid. J. Mater. Sci.-Mater. Med. 2010, 21, 2035–2047. [Google Scholar] [CrossRef]
- Brasil, L.R.; Rodrigues, M.C.; Hewer, T.L.R.; Fronza, B.M.; Arana-Chavez, V.E.; Vichi, F.M.; Madsen, H.E.L.; Braga, R.R. Effect of temperature and reactant concentration on calcium phosphate precipitation. J. Cryst. Growth 2020, 552, 7. [Google Scholar] [CrossRef]
- Wang, K.F.; Luo, F.X.; Wang, L.; Zhang, B.Q.; Fan, Y.J.; Wang, X.; Xu, D.G.; Zhang, X.D. Biomineralization from the Perspective of Ion Aggregation: Calcium Phosphate Nucleation in the Physiological Environment. ACS Appl. Mater. Interfaces 2021, 13, 49519–49534. [Google Scholar] [CrossRef]
- Shin, Y.S.; Jo, M.K.; Cho, Y.S.; Yang, S.H. Diffusion-Controlled Crystallization of Calcium Phosphate in a Hydrogel toward a Homogeneous Octacalcium Phosphate/Agarose Composite. ACS Omega 2022, 7, 1173–1185. [Google Scholar] [CrossRef] [PubMed]
- Shen, D.H.; Horiuchi, N.; Nozaki, S.; Miyashin, M.; Yamashita, K.; Nagai, A. Synthesis and enhanced bone regeneration of carbonate substituted octacalcium phosphate. Bio-Med. Mater. Eng. 2017, 28, 9–21. [Google Scholar] [CrossRef] [PubMed]
- Hamai, R.; Sakai, S.; Shiwaku, Y.; Anada, T.; Tsuchiya, K.; Ishimoto, T.; Nakano, T.; Suzuki, O. Octacalcium phosphate crystals including a higher density dislocation improve its materials osteogenecity. Appl. Mater. Today 2022, 26, 12. [Google Scholar] [CrossRef]
- Kouketsu, A.; Matsui, K.; Kawai, T.; Ezoe, Y.; Takahashi, T.; Kamakura, S. Teriparatide with Octacalcium Phosphate Collagen Composite Stimulates Osteogenic Factors. Tissue Eng. Part A 2022, 28, 125–135. [Google Scholar] [CrossRef]
- Sovljanski, O.; Pezo, L.; Grahovac, J.; Tomic, A.; Ranitovic, A.; Cvetkovic, D.; Markov, S. Best-performing Bacillus strains for microbiologically induced CaCO3 precipitation: Screening of relative influence of operational and environmental factors. J. Biotechnol. 2022, 350, 31–41. [Google Scholar] [CrossRef]
- Li, Z.C.; Zeng, Y.H.; Ren, Q.; Ding, L.J.; Han, S.L.; Hu, D.; Lu, Z.Q.; Wang, L.Y.; Zhang, Y.M.; Zhang, L.L. Mineralization promotion and protection effect of carboxymethyl chitosan biomodification in biomimetic mineralization. Int. J. Biol. Macromol. 2023, 234, 12. [Google Scholar] [CrossRef]
- Zhang, X.L.; Fan, Z.H.; Lu, Q.; Huang, Y.L.; Kaplan, D.L.; Zhu, H.S. Hierarchical biomineralization of calcium carbonate regulated by silk microspheres. Acta Biomater. 2013, 9, 6974–6980. [Google Scholar] [CrossRef]
- Grenier, C.; Román, R.; Duarte, C.; Navarr, J.M.; Rodriguez-Navarro, A.B.; Ramajo, L. The combined effects of salinity and pH on shell biomineralization of the edible mussel Mytilus chilensis. Environ. Pollut. 2020, 263, 10. [Google Scholar] [CrossRef]
- Tanasa, E.; Zaharia, C.; Hudita, A.; Radu, I.C.; Costache, M.; Galateanu, B. Impact of the magnetic field on 3T3-E1 preosteoblasts inside SMART silk fibroin-based scaffolds decorated with magnetic nanoparticles. Mater. Sci. Eng. C 2020, 110, 13. [Google Scholar] [CrossRef] [PubMed]
- Ortiz, F.; Díaz-Barrios, A.; Lopez-Cabaña, Z.E.; González, G. Effect of the Electric Field on the Biomineralization of Collagen. Polymers 2023, 15, 19. [Google Scholar] [CrossRef] [PubMed]
- Baskar, S.; Ramya, J.R.; Arul, K.T.; Nivethaa, E.A.K.; Pillai, V.P.M.; Kalkura, S.N. Impact of magnetic field on the mineralization of iron doped calcium phosphates. Mater. Chem. Phys. 2018, 218, 166–171. [Google Scholar] [CrossRef]
- Sundaram, N.M.; Girija, E.K.; Ashok, M.; Anee, T.K.; Vani, R.; Suganthi, R.V.; Yokogawa, Y.; Kalkura, S.N. Crystallisation of hydroxyapatite nanocrystals under magnetic field. Mater. Lett. 2006, 60, 761–765. [Google Scholar] [CrossRef]
- Yanovska, A.; Kuznetsov, V.; Stanislavov, A.; Danilchenko, S.; Sukhodub, L. A study of brushite crystallization from calcium-phosphate solution in the presence of magnesium under the action of a low magnetic field. Mater. Sci. Eng. C 2012, 32, 1883–1887. [Google Scholar] [CrossRef] [PubMed]
- Kuznetsov, V.N.; Yanovska, A.A.; Stanislavov, A.S.; Danilchenko, S.N.; Kalinkevich, A.N.; Sukhodub, L.F. Controllability of brushite structural parameters using an applied magnetic field. Mater. Sci. Eng. C 2016, 60, 547–553. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, G.; Miyazaki, T. Spontaneous fabrication of octacalcium phosphate: Synthesis conditions and basic characterizations. Bull. Mat. Sci. 2021, 44, 6. [Google Scholar] [CrossRef]
- Iijima, M.; Onuma, K. Particle-size-dependent octacalcium phosphate overgrowth on β-tricalcium phosphate substrate in calcium phosphate solution. Ceram. Int. 2018, 44, 2146–2157. [Google Scholar] [CrossRef]
- Petrakova, N.V.; Teterina, A.Y.; Mikheeva, P.V.; Akhmedova, S.A.; Kuvshinova, E.A.; Sviridova, I.K.; Sergeeva, N.S.; Smirnov, I.V.; Fedotov, A.Y.; Kargin, Y.F.; et al. In Vitro Study of Octacalcium Phosphate Behavior in Different Model Solutions. ACS Omega 2021, 6, 7487–7498. [Google Scholar] [CrossRef] [PubMed]
- Saengdet, P.; Ogawa, M. Directional growth of octacalcium phosphate using micro-flow reactor mixing and subsequent aging. RSC Adv. 2021, 11, 15969–15976. [Google Scholar] [CrossRef]
- McDonogh, D.P.; Kirupananthan, P.; Gebauer, D. Counterintuitive Crystallization: Rate Effects in Calcium Phosphate Nucleation at Near-Physiological pH. Cryst. Growth Des. 2023, 23, 7037–7043. [Google Scholar] [CrossRef]
Temperature (°C) | Time (hours) | Lengths of Directional OCP Crystals in Lower LRs (μm) | Widths of Directional OCP Crystals in Lower LRs (μm) | ||
---|---|---|---|---|---|
Without Magnetic Field | With Magnetic Field | Without Magnetic Field | With Magnetic Field | ||
37 | 24 | 7.1 | 30 | 0.4 | 2.1 |
72 | 50 | 85 | 1.4 | 4.7 | |
120 | 102 | 144 | 1.9 | 7.2 | |
Growth rate (μm/hour) | 0.98 | 1.19 | 0.02 | 0.05 | |
50 | 2 | 3.7 | 12.7 | 0.3 | 0.8 |
4 | 15.2 | 43.7 | 0.5 | 1.2 | |
8 | 48.8 | 82 | 1.3 | 2.2 | |
Growth rate (μm/hour) | 7.64 | 11.27 | 0.17 | 0.23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, W.; Xue, B.; Qian, Q.; Chen, S.; Fu, Z.; Wang, K. Mineralization of Octacalcium Phosphate under Magnetic Field. Crystals 2024, 14, 463. https://doi.org/10.3390/cryst14050463
He W, Xue B, Qian Q, Chen S, Fu Z, Wang K. Mineralization of Octacalcium Phosphate under Magnetic Field. Crystals. 2024; 14(5):463. https://doi.org/10.3390/cryst14050463
Chicago/Turabian StyleHe, Wenhao, Bingyu Xue, Qi Qian, Shenye Chen, Zhengyi Fu, and Kun Wang. 2024. "Mineralization of Octacalcium Phosphate under Magnetic Field" Crystals 14, no. 5: 463. https://doi.org/10.3390/cryst14050463
APA StyleHe, W., Xue, B., Qian, Q., Chen, S., Fu, Z., & Wang, K. (2024). Mineralization of Octacalcium Phosphate under Magnetic Field. Crystals, 14(5), 463. https://doi.org/10.3390/cryst14050463