Molecular Dynamics Analysis of Collison Cascade in Graphite: Insights from Multiple Irradiation Scenarios at Low Temperature
Abstract
:1. Introduction
2. Simulation Methods
3. Results and Discussion
3.1. Collison Cascade Dynamics
3.1.1. Frenkel Pairs (FPs) Evolution under Different PKA Energies for Graphite
3.1.2. The Impact of Displacement Direction on the Frenkel Pairs Kinetics
3.1.3. Effects of Hydrogen Atoms as PKAs on Cascade Dynamics within the Hydride Structure
3.2. Non-Conventional Collision Cascade Scenarios
- Mode D: A conventional single 80 keV PKA, representing the well-understood collision pattern.
- Mode C: Dual PKAs, each with 40 keV.
- Mode B: Quadruple PKAs, each carrying 20 keV.
- Mode A: Eight PKAs, each imparting 10 keV.
- Region 1 (R1): A concentrated area, where the PKA energy—whether from a single atom or distributed across multiple PKAs—is localized.
- Region 2 (R2): A broader region, though some PKAs may still collide or interfere with one another.
- Region 3 (R3): A dispersed region where PKAs act almost independently, simulating isolated collisions.
3.3. The Local-Environment Classification Scheme for Carbon Atoms Rings in Irradiated Graphite
3.4. Cluster Analysis
3.5. Extra Analysis of Layered Responses to Consecutive Collision Cascades in Graphite
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Marsden, B.J.; Jones, A.N.; Hall, G.N.; Treifi, M.; Mummery, P.M. Graphite as a Core Material for Generation IV Nuclear Reactors; Yvon, P., Ed.; Woodhead Publishing: Sawston, UK, 2017; pp. 495–532. [Google Scholar] [CrossRef]
- Marsden, B.J.; Haverty, M.; Bodel, W.; Hall, G.N.; Jones, A.N.; Mummery, P.M.; Treifi, M. Dimensional change, irradiation creep and thermal/mechanical property changes in nuclear graphite. Int. Mater. Rev. 2015, 61, 155–182. [Google Scholar] [CrossRef]
- Shibata, T.; Kunimoto, E.; Eto, M.; Shiozawa, S.; Sawa, K.; Oku, T.; Maruyama, T. Interpolation and Extrapolation Method to Analyze Irradiation-Induced Dimensional Change Data of Graphite for Design of Core Components in Very High Temperature Reactor (VHTR). J. Nucl. Sci. Technol. 2010, 47, 591–598. [Google Scholar] [CrossRef]
- Johns, S.; He, L.; Bustillo, K.; Windes, W.E.; Ubic, R.; Karthik, C. Fullerene-like defects in high-temperature neutron-irradiated nuclear graphite. Carbon 2020, 166, 113–122. [Google Scholar] [CrossRef]
- Atamny, F.; Spillecke, O.; Schlögl, R. On the STM imaging contrast of graphite: Towards a “true’’ atomic resolution. Phys. Chem. Chem. Phys. 1999, 1, 4113–4118. [Google Scholar] [CrossRef]
- Wang, J.; Chen, D.; Chen, T.; Shao, L. Displacement of carbon atoms in few-layer graphene. J. Appl. Phys. 2020, 128, 085902. [Google Scholar] [CrossRef]
- Trevethan, T.; Heggie, M. Molecular dynamics simulations of irradiation defects in graphite: Single crystal mechanical and thermal properties. Comput. Mater. Sci. 2016, 113, 60–65. [Google Scholar] [CrossRef]
- Christie, H.; Robinson, M.; Roach, D.; Ross, D.; Suarez-Martinez, I.; Marks, N. Simulating radiation damage cascades in graphite. Carbon 2015, 81, 105–114. [Google Scholar] [CrossRef]
- Krasheninnikov, A.V.; Banhart, F. Engineering of nanostructured carbon materials with electron or ion beams. Nat. Mater. 2007, 6, 723–733. [Google Scholar] [CrossRef]
- Chen, D.; Shao, L. Using irradiation-induced defects as pinning sites to minimize self-alignment in twisted bilayer graphene. Appl. Phys. Lett. 2021, 118, 151602. [Google Scholar] [CrossRef]
- Tersoff, J. Empirical Interatomic Potential for Carbon, with Applications to Amorphous Carbon. Phys. Rev. Lett. 1988, 61, 2879–2882. [Google Scholar] [CrossRef]
- Smith, R. A classical dynamics study of carbon bombardment of graphite and diamond. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1990, 431, 143–155. [Google Scholar] [CrossRef]
- Smith, R.; Beardmore, K. Molecular dynamics studies of particle impacts with carbon-based materials. Thin Solid Films 1996, 272, 255–270. [Google Scholar] [CrossRef]
- Nordlund, K.; Keinonen, J.; Mattila, T. Formation of Ion Irradiation Induced Small-Scale Defects on Graphite Surfaces. Phys. Rev. Lett. 1996, 77, 699–702. [Google Scholar] [CrossRef]
- Yazyev, O.V.; Tavernelli, I.; Rothlisberger, U.; Helm, L. Early stages of radiation damage in graphite and carbon nanostructures: A first-principles molecular dynamics study. Phys. Rev. B 2007, 75, 115418. [Google Scholar] [CrossRef]
- Stuart, S.J.; Tutein, A.B.; Harrison, J.A. A reactive potential for hydrocarbons with intermolecular interactions. J. Chem. Phys. 2000, 112, 6472–6486. [Google Scholar] [CrossRef]
- Banhart, F. Irradiation effects in carbon nanostructures. Rep. Prog. Phys. 1999, 62, 1181–1221. [Google Scholar] [CrossRef]
- Kane, S.N.; Mishra, A.; Dutta, A.K. International Conference on Recent Trends in Physics 2016 (ICRTP2016). J. Phys. Conf. Ser. 2016, 755, 011001. [Google Scholar] [CrossRef]
- Lechner, C.; Baranek, P.; Vach, H. Adsorption of atomic hydrogen on defect sites of graphite: Influence of surface reconstruction and irradiation damage. Carbon 2018, 127, 437–448. [Google Scholar] [CrossRef]
- Plimpton, S. Fast Parallel Algorithms for Short-Range Molecular Dynamics. J. Comput. Phys. 1995, 117, 1–19. [Google Scholar] [CrossRef]
- Miyashiro, S.; Fujita, S.; Okita, T.; Okuda, H. MD simulations to evaluate effects of applied tensile strain on irradiation-induced defect production at various PKA energies. Fusion Eng. Des. 2012, 87, 1352–1355. [Google Scholar] [CrossRef]
- Mihaila, A.I.C.; Susi, T.; Kotakoski, J. Influence of temperature on the displacement threshold energy in graphene. Sci. Rep. 2019, 9, 12981. [Google Scholar] [CrossRef]
- Banisalman, M.J.; Park, S.; Oda, T. Evaluation of the threshold displacement energy in tungsten by molecular dynamics calculations. J. Nucl. Mater. 2017, 495, 277–284. [Google Scholar] [CrossRef]
- Virtual Lab. Inc. (January 01 Materials Square 2017). Available online: https://www.materialssquare.com/ (accessed on 1 December 2023).
- Banisalman, M.J.; Oda, T. Atomistic simulation for strain effects on threshold displacement energies in refractory metals. Comput. Mater. Sci. 2019, 158, 346–352. [Google Scholar] [CrossRef]
- Rycroft, C.H. VORO++: A three-dimensional Voronoi cell library in C++. Chaos Interdiscip. J. Nonlinear Sci. 2009, 19, 041111. [Google Scholar] [CrossRef]
- Norgett, M.; Robinson, M.; Torrens, I. A proposed method of calculating displacement dose rates. Nucl. Eng. Des. 1975, 33, 50–54. [Google Scholar] [CrossRef]
- Hu, Z.; Chen, D.; Kim, S.; Chauhan, R.; Li, Y.; Shao, L. Effect of Stress on Irradiation Responses of Highly Oriented Pyrolytic Graphite. Materials 2022, 15, 3415. [Google Scholar] [CrossRef]
- Stukowski, A. Visualization and analysis of atomistic simulation data with OVITO—The Open Visualization Tool. Model. Simul. Mater. Sci. Eng. 2009, 18, 015012. [Google Scholar] [CrossRef]
- Stoller, R.E.; Greenwood, L.R. Subcascade formation in displacement cascade simulations: Implications for fusion reactor materials. J. Nucl. Mater. 1999, 271–272, 57–62. [Google Scholar] [CrossRef]
- Brice, D. Evidence for a single shallow hydrogen trap in hydrogen implanted graphite. Nucl. Instrum. Methods Phys. Res. B 1990, 44, 302–312. [Google Scholar] [CrossRef]
- Sun, J.; Li, S.; Stirner, T.; Chen, J.; Wang, D. Molecular dynamics simulation of energy exchanges during hydrogen collision with graphite sheets. J. Appl. Phys. 2010, 107, 113533. [Google Scholar] [CrossRef]
- Miao, M.; Nardelli, M.B.; Wang, Q.; Liu, Y. First principles study of the permeability of graphene to hydrogen atoms. Phys. Chem. Chem. Phys. 2013, 15, 16132–16137. [Google Scholar] [CrossRef] [PubMed]
- Weerasinghe, A.; Ramasubramaniam, A.; Maroudas, D. Electronic structure of electron-irradiated graphene and effects of hydrogen passivation. Mater. Res. Express 2018, 5, 115603. [Google Scholar] [CrossRef]
- Calder, A.; Bacon, D.; Barashev, A.; Osetsky, Y. On the origin of large interstitial clusters in displacement cascades. Philos. Mag. 2010, 90, 863–884. [Google Scholar] [CrossRef]
- Krasheninnikov, A.V.; Banhart, F.; Li, J.X.; Foster, A.S.; Nieminen, R.M. Stability of carbon nanotubes under electron irradiation: Role of tube diameter and chirality. Phys. Rev. B Condens. Matter Mater. Phys. 2005, 72, 125428. [Google Scholar] [CrossRef]
- Zobelli, A.; Ivanovskaya, V.; Wagner, P.; Suarez-Martinez, I.; Yaya, A.; Ewels, C.P. A comparative study of density functional and density functional tight binding calculations of defects in graphene. Phys. Status Solidi B Basic Res. 2011, 249, 276–282. [Google Scholar] [CrossRef]
- Salman, M.B.; Park, M.; Banisalman, M.J. Atomistic Study for the Tantalum and Tantalum–Tungsten Alloy Threshold Displacement Energy under Local Strain. Int. J. Mol. Sci. 2023, 24, 3289. [Google Scholar] [CrossRef] [PubMed]
- Salman, M.B.; Park, M.; Banisalman, M.J. A Molecular Dynamics Study of Tungsten’s Interstitial Dislocation Loops Formation Induced by Irradiation under Local Strain. Solids 2022, 3, 219–230. [Google Scholar] [CrossRef]
- Salman, M.B.; Park, M.; Banisalman, M.J. Revealing the Effects of Strain and Alloying on Primary Irradiation Defects Evolution in Tantalum Through Atomistic Simulations. Met. Mater. Int. 2023, 29, 3618–3629. [Google Scholar] [CrossRef]
- Ruffieux, P.; Gröning, O.; Schwaller, P.; Schlapbach, L.; Gröning, P. Hydrogen Atoms Cause Long-Range Electronic Effects on Graphite. Phys. Rev. Lett. 2000, 84, 4910–4913. [Google Scholar] [CrossRef]
- Bernal, J.D.; Walker, S.J.; Bernal, J.D.; Walker, S.J. The Structure of Graphite. Proc. R. Soc. London. Ser. A Contain. Pap. A Math. Phys. Character 1924, 1, 1123–1125. [Google Scholar]
- Banisalman, M.; Oda, T. Molecular Dynamics Study for the Uniaxial Stress Effect on the Threshold Displacement Energy and Defect Formation Energies in Tungsten. In Proceedings of the KNS 2018-Transactions of the Korean Nuclear Society Autumn Meeting, Jeju, Republic of Korea, 16–18 May 2018. [Google Scholar]
- Banisalman, M.J.; Oda, T. Iron Interstitial Defects Stability: Under the Uniaxial Stress Effect. Cumhur. Sci. J. 2018, 39, 16–22. [Google Scholar] [CrossRef]
- Il Choi, S.; Banisalman, M.J.; Lee, G.-G.; Kwon, J.; Yoon, E.; Kim, J.H. Using rate theory to better understand the stress effect of irradiation creep in iron and its based alloy. J. Nucl. Mater. 2020, 536, 152198. [Google Scholar] [CrossRef]
- Vos, M.; Fang, Z.; Canney, S.; Kheifets, A.; McCarthy, I.E.; Weigold, E. Energy-momentum density of graphite by(e,2e)spectroscopy. Phys. Rev. B 1997, 56, 963–966. [Google Scholar] [CrossRef]
- Koga, T. Low- and high-momentum density functions in many-electron atoms. Chem. Phys. Lett. 2005, 411, 243–247. [Google Scholar] [CrossRef]
- Liao, W.; Alles, M.L.; Zhang, E.X.; Fleetwood, D.M.; Reed, R.A.; Weller, R.A.; Schrimpf, R.D. Monte Carlo Simulation of Displacement Damage in Graphene. IEEE Trans. Nucl. Sci. 2019, 66, 1730–1737. [Google Scholar] [CrossRef]
- Granja-DelRío, A.; Alonso, J.A.; López, M.J. Competition between Palladium Clusters and Hydrogen to Saturate Graphene Vacancies. J. Phys. Chem. C 2017, 121, 10843–10850. [Google Scholar] [CrossRef]
- Heggie, M.I.; Latham, C.D. The atomic-, nano-, and meso-scale origins of graphite’s response to energetic particles. In Computational Nanoscience; Bichoutskaia, E., Ed.; Theoretical and Computational Chemistry; The Royal Society of Chemistry: Cambridge, UK, 2011; Volume 4, pp. 378–414. [Google Scholar]
- Samela, J.; Nordlund, K.; Keinonen, J.; Popok, V.N.; Campbell, E.E. Argon cluster impacts on layered silicon, silica, and graphite surfaces. Eur. Phys. J. D 2007, 43, 181–184. [Google Scholar] [CrossRef]
- Popok, V. Energetic cluster ion beams: Modification of surfaces and shallow layers. Mater. Sci. Eng. R Rep. 2011, 72, 137–157. [Google Scholar] [CrossRef]
- Liu, J.; Trautmann, C.; Müller, C.; Neumann, R. Graphite irradiated by swift heavy ions under grazing incidence. Nucl. Instrum. Methods Phys. Res. Sect. B 2002, 193, 259–264. [Google Scholar] [CrossRef]
- Allen, L.P.; Insepov, Z.; Fenner, D.B.; Santeufemio, C.; Brooks, W.; Jones, K.S.; Yamada, I. Craters on silicon surfaces created by gas cluster ion impacts. J. Appl. Phys. 2002, 92, 3671–3678. [Google Scholar] [CrossRef]
- Popok, V.; Samela, J.; Nordlund, K.; Popov, V. Impact of keV-energy argon clusters on diamond and graphite. Nucl. Instrum. Methods Phys. Res. Sect. B 2011, 282, 112–115. [Google Scholar] [CrossRef]
- Egerton, R.F. The threshold energy for electron irradiation damage in single-crystal graphite. Philos. Mag. 1977, 35, 1425–1428. [Google Scholar] [CrossRef]
- Frohs, W.; von Sturm, F.; Wege, E.; Nutsch, G.; Handl, W. Carbon, 3. Graphite. In Ullmann’s Encyclopedia of Industrial Chemistry; John Wiley & Son Ltd.: Hoboken, NJ, USA, 2010. [Google Scholar] [CrossRef]
- Farbos, B.; Freeman, H.; Hardcastle, T.; Da Costa, J.-P.; Brydson, R.; Scott, A.J.; Weisbecker, P.; Germain, C.; Vignoles, G.L.; Leyssale, J.-M. A time-dependent atomistic reconstruction of severe irradiation damage and associated property changes in nuclear graphite. Carbon 2017, 120, 111–120. [Google Scholar] [CrossRef]
- Iwata, T.; Nihira, T. Atomic Displacements by Electron Irradiation in Pyrolytic Graphite. J. Phys. Soc. Jpn. 1971, 31, 1761–1783. [Google Scholar] [CrossRef]
- Wagner, P.; Ivanovskaya, V.V.; Melle-Franco, M.; Humbert, B.; Adjizian, J.-J.; Briddon, P.R.; Ewels, C.P. Stable hydrogenated graphene edge types: Normal and reconstructed Klein edges. Phys. Rev. B 2013, 88, 094106. [Google Scholar] [CrossRef]
- Zhong, M.; Huang, C.; Wang, G. Edge magnetism modulation of graphene nanoribbons via planar tetrahedral coordinated atoms embedding. J. Mater. Sci. 2017, 52, 12307–12313. [Google Scholar] [CrossRef]
- Fu, J.; Chen, Y.; Fang, J.; Gao, N.; Hu, W.; Jiang, C.; Zhou, H.-B.; Lu, G.-H.; Gao, F.; Deng, H. Molecular dynamics simulations of high-energy radiation damage in W and W–Re alloys. J. Nucl. Mater. 2019, 524, 9–20. [Google Scholar] [CrossRef]
- Malerba, L.; Terentyev, D.; Olsson, P.; Chakarova, R.; Wallenius, J. Molecular dynamics simulation of displacement cascades in Fe–Cr alloys. J. Nucl. Mater. 2004, 329–333, 1156–1160. [Google Scholar] [CrossRef]
- Terentyev, D.A.; Malerba, L.; Chakarova, R.; Nordlund, K.; Olsson, P.; Rieth, M.; Wallenius, J. Displacement cascades in Fe–Cr: A molecular dynamics study. J. Nucl. Mater. 2006, 349, 119–132. [Google Scholar] [CrossRef]
- Li, L.; Reich, S.; Robertson, J. Defect energies of graphite: Density-functional calculations. Phys. Rev. B 2005, 72, 184109. [Google Scholar] [CrossRef]
- Dostov, A.I. A method of calculating the rate of release of Wigner energy in heat conduction problems for irradiated graphite. High Temp. 2005, 43, 259–265. [Google Scholar] [CrossRef]
- Eto, M.; Oku, T. The effect of pre-stressing and annealing on the young’s modulus of some nuclear graphites. J. Nucl. Mater. 1973, 46, 315–323. [Google Scholar] [CrossRef]
- Vukovic, F.; Leyssale, J.-M.; Aurel, P.; Marks, N.A. Evolution of Threshold Displacement Energy in Irradiated Graphite. Phys. Rev. Appl. 2018, 10, 064040. [Google Scholar] [CrossRef]
- Thrower, P.; Reynolds, W. Microstructural changes in neutron-irradiated graphite. J. Nucl. Mater. 1963, 8, 221–226. [Google Scholar] [CrossRef]
- IAEA-TECDOC-1154; Irradiation Damage in Graphite Due to Fast Neutrons in Fission and Fusion Systems. IAEA: Vienna, Austria, 2000.
- Taylor, R.; Brown, R.; Gilchrist, K.; Hall, E.; Hodds, A.; Kelly, B.; Morris, F. The mechanical properties of reactor graphite. Carbon 1967, 5, 519–531. [Google Scholar] [CrossRef]
- Heggie, M.; Suarez-Martinez, I.; Davidson, C.; Haffenden, G. Buckle, ruck and tuck: A proposed new model for the response of graphite to neutron irradiation. J. Nucl. Mater. 2011, 413, 150–155. [Google Scholar] [CrossRef]
PKA Energy (keV) | Number of Atoms in Structure | Number of Independent MD Runs | Displacements Counts (NRT) | Simulation Duration (ps) |
---|---|---|---|---|
10 | 400,000 | 20 | 114 | 30 |
20 | 400,000 | 20 | 228 | 30 |
40 | 400,000 | 20 | 457 | 30 |
80 | 400,000 | 20 | 914 | 30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alnairi, M.M.; Jaser Banisalman, M. Molecular Dynamics Analysis of Collison Cascade in Graphite: Insights from Multiple Irradiation Scenarios at Low Temperature. Crystals 2024, 14, 522. https://doi.org/10.3390/cryst14060522
Alnairi MM, Jaser Banisalman M. Molecular Dynamics Analysis of Collison Cascade in Graphite: Insights from Multiple Irradiation Scenarios at Low Temperature. Crystals. 2024; 14(6):522. https://doi.org/10.3390/cryst14060522
Chicago/Turabian StyleAlnairi, Marzoqa M., and Mosab Jaser Banisalman. 2024. "Molecular Dynamics Analysis of Collison Cascade in Graphite: Insights from Multiple Irradiation Scenarios at Low Temperature" Crystals 14, no. 6: 522. https://doi.org/10.3390/cryst14060522
APA StyleAlnairi, M. M., & Jaser Banisalman, M. (2024). Molecular Dynamics Analysis of Collison Cascade in Graphite: Insights from Multiple Irradiation Scenarios at Low Temperature. Crystals, 14(6), 522. https://doi.org/10.3390/cryst14060522