Organic–Inorganic Hybrids: A Class of Material with Infinite Opportunities
Author Contributions
Conflicts of Interest
References
- Bai, Y.; Dou, Y.; Xie, L.-H.; Rutledge, W.; Li, J.-R.; Zhou, H.-C. Zr-based metal–organic frameworks: Design, synthesis, structure, and applications. Chem. Soc. Rev. 2016, 45, 2327–2367. [Google Scholar] [CrossRef] [PubMed]
- Gupta, D.K.; Kumar, S.; Wani, M.Y. MOF magic: Zirconium-based frameworks in theranostic and bio-imaging applications. J. Mater. Chem. B 2024, 12, 2691–2710. [Google Scholar] [CrossRef]
- Pournara, A.D.; Andreou, E.K.; Armatas, G.S.; Manos, M.J. Zirconium(IV) Metal Organic Frameworks with Highly Selective Sorption for Diclofenac under Batch and Continuous Flow Conditions. Crystals 2022, 12, 424. [Google Scholar] [CrossRef]
- Feng, L.; Day, G.S.; Wang, K.-Y.; Yuan, S.; Zhou, H.-C. Strategies for Pore Engineering in Zirconium Metal-Organic Frameworks. Chem 2020, 6, 2902–2923. [Google Scholar] [CrossRef]
- Chen, O.I.-F.; Liu, C.-H.; Wang, K.; Borrego-Marin, E.; Li, H.; Alawadhi, A.H.; Navarro, J.A.R.; Yaghi, O.M. Water-Enhanced Direct Air Capture of Carbon Dioxide in Metal–Organic Frameworks. J. Am. Chem. Soc. 2024, 146, 2835–2844. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Gulam Rabbani, S.M.; Liu, Q.; Bi, W.; Duan, J.; Lu, Z.; Schweitzer, N.M.; Getman, R.B.; Hupp, J.T.; Chapman, K.W. Atomically Precise Single-Site Catalysts via Exsolution in a Polyoxometalate–Metal–Organic-Framework Architecture. J. Am. Chem. Soc. 2024, 146, 7950–7955. [Google Scholar] [CrossRef] [PubMed]
- Luo, D.; Zhang, J.; Liang, Y.; Ni, J.; Wang, F.; Liu, W. New Copper Bromide Organic-Inorganic Hybrid Molecular Compounds with Anionic Inorganic Core and Cationic Organic Ligands. Crystals 2022, 12, 19. [Google Scholar] [CrossRef]
- Liu, W.; Zhu, K.; Teat, S.J.; Dey, G.; Shen, Z.; Wang, L.; O’Carroll, D.M.; Li, J. All-in-One: Achieving Robust, Strongly Luminescent and Highly Dispersible Hybrid Materials by Combining Ionic and Coordinate Bonds in Molecular Crystals. J. Am. Chem. Soc. 2017, 139, 9281–9290. [Google Scholar] [CrossRef] [PubMed]
- Hei, X.; Li, J. All-in-one: A new approach toward robust and solution-processable copper halide hybrid semiconductors by integrating covalent, coordinate and ionic bonds in their structures. Chem. Sci. 2021, 12, 3805–3817. [Google Scholar] [CrossRef]
- Hei, X.; Zhu, K.; Carignan, G.; Teat, S.J.; Li, M.; Zhang, G.; Bonite, M.; Li, J. Solution-processable copper(I) iodide-based inorganic-organic hybrid semiconductors composed of both coordinate and ionic bonds. J. Solid State Chem. 2022, 314, 123427. [Google Scholar] [CrossRef]
- Lei, B.; Wu, X.; Liu, W. A New Copper(I) Iodide Based Organic-Inorganic Hybrid Structure with Red Emission. Crystals 2021, 11, 594. [Google Scholar] [CrossRef]
- Shao, J.-J.; Ni, J.-L.; Chen, W.-M.; Liu, P.-L.; Mensah, A.; Chen, L.-Z.; Wang, F.-M. Systematic regulation of ligands realizes the transition of luminescence color cuprous iodide inorganic–organic hybrid materials from blue to green light. New J. Chem. 2023, 47, 2556–2564. [Google Scholar] [CrossRef]
- Liu, G.-N.; Li, M.-K.; Xu, R.-D.; Zhang, N.-N.; Quan, X.-J.; Qian, B.-J.; Lu, Y.-H.; Li, C. A halogen bonding assembled hybrid copper halide framework as a promising hypotoxicity photodetector. Inorg. Chem. Front. 2022, 9, 6510–6516. [Google Scholar] [CrossRef]
- Hei, X.; Li, J. Making coordination networks ionic: A unique strategy to achieve solution-processable hybrid semiconductors. Mat. Chem. Front. 2023, 7, 4598–4604. [Google Scholar] [CrossRef]
- Li, J.; Han, Z.; Gu, Y.; Yu, D.; Liu, J.; Hu, D.; Xu, X.; Zeng, H. Perovskite Single Crystals: Synthesis, Optoelectronic Properties, and Application. Adv. Funct. Mater. 2021, 31, 2008684. [Google Scholar] [CrossRef]
- Sum, T.C. The photophysics of perovskite solar cells. In Proceedings of the SPIE 9165, Physical Chemistry of Interfaces and Nanomaterials XIII, 91650Y, San Diego, CA, USA, 9 September 2014. [Google Scholar] [CrossRef]
- Guo, Z.L.; Jena, A.K.; Kim, G.M.; Miyasaka, T. The high open-circuit voltage of perovskite solar cells: A review. Energy Environ. Sci. 2022, 15, 3171–3222. [Google Scholar] [CrossRef]
- Chu, Z.; Chu, X.; Zhao, Y.; Ye, Q.; Jiang, J.; Zhang, X.; You, J. Emerging Low-Dimensional Crystal Structure of Metal Halide Perovskite Optoelectronic Materials and Devices. Small Struct. 2021, 2, 2000133. [Google Scholar] [CrossRef]
- Li, Z.; Li, B.; Wu, X.; Sheppard, S.A.; Zhang, S.; Gao, D.; Long, N.J.; Zhu, Z. Organometallic-functionalized interfaces for highly efficient inverted perovskite solar cells. Science 2022, 376, 416–420. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Q.; Tong, J.; Xian, Y.; Kerner, R.A.; Dunfield, S.P.; Xiao, C.; Scheidt, R.A.; Kuciauskas, D.; Wang, X.; Hautzinger, M.P.; et al. Surface reaction for efficient and stable inverted perovskite solar cells. Nature 2022, 611, 278–283. [Google Scholar] [CrossRef]
- Yu, R.; Li, C.; Zhao, B.; Tan, Z. Frontiers in Green Perovskite Light-Emitting Diodes. Laser Photon. Rev. 2024, 18, 2300780. [Google Scholar]
- Wang, S.-Z.; Wang, J.-T.; Lou, Y.-H.; Zhou, Y.-H.; Wang, Z.-K. Environment-Friendly Perovskite Light-Emitting Diodes: Progress and Perspective. Adv. Mater. Interfaces 2022, 9, 2200772. [Google Scholar] [CrossRef]
- Paulus, F.; Tyznik, C.; Jurchescu, O.D.; Vaynzof, Y. Switched-On: Progress, Challenges, and Opportunities in Metal Halide Perovskite Transistors. Adv. Funct. Mater. 2021, 31, 2101029. [Google Scholar] [CrossRef]
- Abiram, G.; Thanihaichelvan, M.; Ravirajan, P.; Velauthapillai, D. Review on Perovskite Semiconductor Field–Effect Transistors and Their Applications. Nanomaterials 2022, 12, 2396. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Tsao, H.N.; Zhang, Z.; Gao, P. Miscellaneous and Perspicacious: Hybrid Halide Perovskite Materials Based Photodetectors and Sensors. Adv. Opt. Mater. 2020, 8, 2001095. [Google Scholar] [CrossRef]
- Lin, C.-F.; Huang, K.-W.; Chen, Y.-T.; Hsueh, S.-L.; Li, M.-H.; Chen, P. Perovskite-Based X-ray Detectors. Nanomaterials 2023, 13, 2024. [Google Scholar] [CrossRef] [PubMed]
- Wan, Z.; Liu, Z.; Zhang, Q.; Zhang, Q.; Gu, M. Laser Technology for Perovskite: Fabrication and Applications. Adv. Mater. Technol. 2024, 9, 2302033. [Google Scholar] [CrossRef]
- Zhao, C.; Qin, C. Quasi-2D lead halide perovskite gain materials toward electrical pumping laser. Nanophotonics 2020, 10, 2167–2180. [Google Scholar] [CrossRef]
- Wang, H.; Liu, G.; Xu, C.; Zeng, F.; Xie, X.; Wu, S. Surface Passivation Using N-Type Organic Semiconductor by One-Step Method in Two-Dimensional Perovskite Solar Cells. Crystals 2021, 11, 933. [Google Scholar] [CrossRef]
- Wang, F.; Ge, C.; Zhou, X.; Liang, X.; Duan, D.; Lin, H.; Zhu, Q.; Hu, H. Manipulation of Crystallization Kinetics for Perovskite Photovoltaics Prepared Using Two-Step Method. Crystals 2022, 12, 815. [Google Scholar] [CrossRef]
- Zhang, H.; Shi, Z.; Hu, L.; Tang, Y.-Y.; Qin, Z.; Liao, W.-Q.; Wang, Z.S.; Qin, J.; Li, X.; Wang, H.; et al. Highly Efficient 1D/3D Ferroelectric Perovskite Solar Cell. Adv. Funct. Mater. 2021, 31, 2100205. [Google Scholar] [CrossRef]
- Sun, H.; Deng, K.; Zhu, Y.; Liao, M.; Xiong, J.; Li, Y.; Li, L. A Novel Conductive Mesoporous Layer with a Dynamic Two-Step Deposition Strategy Boosts Efficiency of Perovskite Solar Cells to 20%. Adv. Mater. 2018, 30, 1801935. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zhou, J.; Tan, L.; Li, M.; Jiang, C.; Wang, S.; Zhao, X.; Liu, Y.; Zhang, Y.; Ye, Y.; et al. Sequential vacuum-evaporated perovskite solar cells with more than 24% efficiency. Sci. Adv. 2022, 8, eabo7422. [Google Scholar] [CrossRef]
- Jeong, M.; Choi, I.W.; Yim, K.; Jeong, S.; Kim, M.; Choi, S.J.; Cho, Y.; An, J.-H.; Kim, H.-B.; Jo, Y.; et al. Large-area perovskite solar cells employing spiro-Naph hole transport material. Nat. Photonics 2022, 16, 119–125. [Google Scholar] [CrossRef]
- Liu, D.; Wang, Q.; Traverse, C.J.; Yang, C.; Young, M.; Kuttipillai, P.S.; Lunt, S.Y.; Hamann, T.W.; Lunt, R.R. Impact of Ultrathin C60 on Perovskite Photovoltaic Devices. ACS Nano 2018, 12, 876–883. [Google Scholar] [CrossRef]
- Wang, J.; Zardetto, V.; Datta, K.; Zhang, D.; Wienk, M.M.; Janssen, R.A.J. 16.8% Monolithic all-perovskite triple-junction solar cells via a universal two-step solution process. Nat. Commun. 2020, 11, 5254. [Google Scholar] [CrossRef]
- Wu, Z.; Bi, E.; Li, C.; Chen, L.; Song, Z.; Yan, Y. Scalable Two-Step Production of High-Efficiency Perovskite Solar Cells and Modules. Solar RRL 2023, 7, 2200571. [Google Scholar] [CrossRef]
- Han, Y.; Xie, H.; Lim, E.L.; Bi, D. Review of Two-Step Method for Lead Halide Perovskite Solar Cells. Solar RRL 2022, 6, 2101007. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, Y.; Ge, C.; Tang, B.; Lin, H.; Zhang, X.; Huang, Y.; Zhu, Q.; Hu, H. Lead-Free Perovskite Single Crystals: A Brief Review. Crystals 2021, 11, 1329. [Google Scholar] [CrossRef]
- Weng, S.C.; Yu, G.C.; Zhou, C.; Lin, F.; Han, Y.L.; Wang, H.; Huang, X.X.; Liu, X.Y.; Hu, H.L.; Liu, W.; et al. Challenges and Opportunities for the Blue Perovskite Quantum Dot Light-Emitting Diodes. Crystals 2022, 12, 929. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, H.; Liu, W.; Wu, X. Organic–Inorganic Hybrids: A Class of Material with Infinite Opportunities. Crystals 2024, 14, 535. https://doi.org/10.3390/cryst14060535
Lin H, Liu W, Wu X. Organic–Inorganic Hybrids: A Class of Material with Infinite Opportunities. Crystals. 2024; 14(6):535. https://doi.org/10.3390/cryst14060535
Chicago/Turabian StyleLin, Haoran, Wei Liu, and Xin Wu. 2024. "Organic–Inorganic Hybrids: A Class of Material with Infinite Opportunities" Crystals 14, no. 6: 535. https://doi.org/10.3390/cryst14060535
APA StyleLin, H., Liu, W., & Wu, X. (2024). Organic–Inorganic Hybrids: A Class of Material with Infinite Opportunities. Crystals, 14(6), 535. https://doi.org/10.3390/cryst14060535