Self–Assembled Complexes: “Love at First Sight”
Author Contributions
Conflicts of Interest
References
- Lehn, J.M. Toward Complex Matter: Supramolecular Chemistry and Self-Organization. Proc. Natl. Acad. Sci. USA 2002, 99, 4769–4774. [Google Scholar] [CrossRef] [PubMed]
- Whitesides, G.M.; Grzybowski, B. Self-Assembly at All Scales. Science 2002, 295, 2418–2421. [Google Scholar] [CrossRef] [PubMed]
- Northrop, B.H.; Zheng, Y.-R.; Chi, K.-W.; Stang, P.J. Self-Organization in Coordination-Driven Self-Assembly. Acc. Chem. Res. 2009, 42, 1554–1563. [Google Scholar] [CrossRef] [PubMed]
- Sanmartín, J.; Bermejo, M.R.; García-Deibe, A.M.; Llamas-Saiz, A.L. Unusual high nuclearity and pseudo-tetrahedral Zn8O13 core found in a self-assembled complex. Chem. Commun. 2000, 795–796. [Google Scholar] [CrossRef]
- Imamura, T.; Fukushima, K. Self-assembly of metallopyridylporphyrin oligomers. Coord. Chem. Rev. 2000, 198, 133–156. [Google Scholar] [CrossRef]
- Fondo, M.; Doejo, J.; García-Deibe, A.M.; Sanmartín-Matalobos, J.; Vicente, R. A Ni8 metallacalix [4]arene and a Cu4 molecular rhomboid: Limiting the nuclearity of carboxysalen-like metal complexes. CrystEngComm 2016, 18, 6673–6682. [Google Scholar] [CrossRef]
- Yu, X.; Chau, M.-C.; Tang, W.K.; Siu, C.-K.; Yao, Z.-P. Self-Assembled Binuclear Cu(II)–Histidine Complex for Absolute Configuration and Enantiomeric Excess Determination of Naproxen by Tandem Mass Spectrometry. Anal. Chem. 2018, 90, 4089–4097. [Google Scholar] [CrossRef] [PubMed]
- Sakamoto, R.; Iwashima, T.; Tsuchiya, M.; Toyoda, R.; Matsuoka, R.; Kögel, J.F.; Kusaka, S.; Hoshiko, K.; Yagi, T.; Nagayama, T.; et al. New aspects in bis and tris(dipyrrinato)metal complexes: Bright luminescence, self-assembled nanoarchitectures, and materials applications. J. Mater. Chem. A 2015, 3, 15357–15371. [Google Scholar] [CrossRef]
- Sanmartín-Matalobos, J.; Fondo, M.; García-Deibe, A.M.; Amoza, M.; Bermejo, P.; Domínguez, M.R.; Mota, A.J.; Pérez-Lustres, J.L.; Bhowmick, S.; Das, N. Zinc-mediated diastereoselective assembly of a trinuclear circular helicate is the title of the study. RSC Adv. 2016, 6, 21228–21234. [Google Scholar] [CrossRef]
- Luo, J.; Hong, M.; Wang, R.; Cao, R.; Shi, Q.; Weng, J. Self-Assembly of Five Cadmium(II) Coordination Polymers from 4,4′-Diaminodiphenylmethane. Eur. J. Inorg. Chem. 2003, 2003, 1778–1784. [Google Scholar] [CrossRef]
- Béziau, A.; Baudron, S.A.; Guenet, A.; Hosseini, M.W. Luminescent Coordination Polymers Based on Self-Assembled Cadmium Dipyrrin Complexes. Chem. Eur. J. 2013, 19, 3215–3223. [Google Scholar] [CrossRef] [PubMed]
- Datta, S.; Saha, M.L.; Stang, P.J. Hierarchical Assemblies of Supramolecular Coordination Complexes. Acc. Chem. Res. 2018, 51, 2047–2063. [Google Scholar] [CrossRef] [PubMed]
- Han, F.; Liu, Y.; Li, F.; Lu, Y.; Cheng, H.; Lin, Y.; Zhao, T.; Ng, S.H.; Bach, U.; Zheng, J.Y. Self-assembly of coordination polymers on plasmonic surfaces for computer vision decodable, unclonable and colorful security labels. Mater. Chem. C 2019, 7, 13040–13046. [Google Scholar] [CrossRef]
- Fromm, K.M. Coordination polymer networks with s-block metal ions. Coord. Chem. Rev. 2008, 252, 856–885. [Google Scholar] [CrossRef]
- Mote, N.R.; Patel, K.; Shinde, D.R.; Gaikwad, S.R.; Koshti, V.S.; Gonnade, R.G.; Chikkali, S.H. H-Bonding Assisted Self-Assembly of Anionic and Neutral Ligand on Metal: A Comprehensive Strategy To Mimic Ditopic Ligands in Olefin Polymerization. Inorg. Chem. 2017, 56, 12448–12456. [Google Scholar] [CrossRef]
- Wang, W.; Zhou, Z.; Zhou, J.; Shi, B.; Song, B.; Li, X.; Huang, F.; Stang, P.J. Self-Assembled Amphiphilic Janus Double Metallacycle. Inorg. Chem. 2019, 58, 7141–7145. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Wei, C.; Tao, J.; Wu, X.; Huang, N.; Zhang, G.; Li, L. Supramolecular Polymers Self-Assembled from trans-Bis(pyridine) Dichloropalladium(II) and Platinum(II) Complexes. Chem. Eur. J. 2014, 20, 2812–2818. [Google Scholar] [CrossRef] [PubMed]
- García-Deibe, A.M.; Fondo, M.; Corredoira-Vázquez, J.; Fallah, M.S.E.; Sanmartín-Matalobos, J. Hierarchical assembly of antiparallel homochiral sheets formed by hydrogen-bonded helixes of a trapped-valence CoII/CoIII complex. Cryst. Growth Des. 2017, 17, 467–473. [Google Scholar] [CrossRef]
- Ziegler, M.; Miranda, J.J.; Anderson, U.N.; Johnson, D.W.; Leary, J.A.; Raymond, K.N. Combinatorial Libraries of Metal-Ligand Assemblies with an Encapsulated Guest Molecule. Angew. Chem. Int. Ed. 2001, 40, 733–735. [Google Scholar] [CrossRef]
- Sanmartín-Matalobos, J.; Portela-García, C.; Fondo, M.; García-Deibe, A.M. Chiral Recognition between Metallohelicates via Strong H Bonds: Homochiral Bishelical Coupling and Mesohelical Polymerization. Cryst. Growth Des. 2015, 15, 4318–4323. [Google Scholar] [CrossRef]
- Matern, J.; Maisuls, I.; Strassert, C.A.; Fernández, G. Luminescence and Length Control in Nonchelated d8-Metallosupramolecular Polymers through Metal-Metal Interactions. Angew. Chem. Int. Ed. 2022, 61, e202208436. [Google Scholar] [CrossRef]
- Legrand, Y.-M.; van der Lee, A.; Barboiu, M. Self-Optimizing Charge-Transfer Energy Phenomena in Metallosupramolecular Complexes by Dynamic Constitutional Self-Sorting. Inorg. Chem. 2007, 46, 9540–9547. [Google Scholar] [CrossRef]
- Avci, C.; Imaz, I.; Carné-Sánchez, A.; Pariente, J.A.; Tasios, N.; Pérez-Carvajal, J.; Alonso, M.I.; Blanco, A.; Dijkstra, M.; López, C.; et al. Self-assembly of polyhedral metal–organic framework particles into three-dimensional ordered superstructures. Nat. Chem. 2018, 10, 78–84. [Google Scholar] [CrossRef] [PubMed]
- Vardhan, H.; Yusubov, M.; Verpoort, F. Self-assembled metal–organic polyhedra: An overview of various applications. Coord. Chem. Rev. 2016, 306, 171–194. [Google Scholar] [CrossRef]
- Ikkala, O.; ten Brinke, G. Functional Materials Based on Self-Assembly of Polymeric Supramolecules. Science 2002, 295, 2407–2409. [Google Scholar] [CrossRef]
- Nakamura, T.; Ube, H.; Miyake, R.; Shionoya, M. A C60-Templated Tetrameric Porphyrin Barrel Complex via Zinc-Mediated Self-Assembly Utilizing Labile Capping Ligands. J. Am. Chem. Soc. 2013, 135, 18790–18793. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Liu, B. Self-Assembled Ring-Based Complex Colloidal Particles by Lock-And-Key Interaction and Their Self-Assembly into Unusual Colloidal Crystals. Langmuir 2024, 40, 9205–9214. [Google Scholar] [CrossRef] [PubMed]
- Chang, W.S.; Liu, H.-J.; Tra, V.T.; Chen, J.-W.; Wei, T.-C.; Tzeng, W.Y.; Zhu, Y.; Kuo, H.-H.; Hsieh, Y.-H.; Lin, J.-C.; et al. Tuning Electronic Transport in a Self-Assembled Nanocomposite. ACS Nano 2014, 8, 6242–6249. [Google Scholar] [CrossRef]
- Park, H.; Kim, K.Y.; Jung, S.H.; Choi, Y.; Sato, H.; Jung, J.H. Different Origins of Strain-Induced Chirality Inversion of Co2+-Triggered Supramolecular Peptide Polymers. Chem. Mater. 2018, 30, 2074–2083. [Google Scholar] [CrossRef]
- Jang, Y.; Champion, J.A. Self-Assembled Materials Made from Functional Recombinant Proteins. Acc. Chem. Res. 2016, 49, 2188–2198. [Google Scholar] [CrossRef]
- Katyal, P.; Meleties, M.; Montclare, J.K. Self-Assembled Protein- and Peptide-Based Nanomaterials. ACS Biomater. Sci. Eng. 2019, 5, 4132–4147. [Google Scholar] [CrossRef] [PubMed]
- Fendler, J.H. Self-Assembled Nanostructured Materials. Chem. Mater. 1996, 8, 1616–1624. [Google Scholar] [CrossRef]
- Lu, W.; Roya, V.A.L.; Che, C.-M. Self-assembled nanostructures with tridentate cyclometalated platinum(II) complexes. Chem. Commun. 2006, 3972–3974. [Google Scholar] [CrossRef] [PubMed]
- Zang, L.; Che, Y.; Moore, J.S. One-Dimensional Self-Assembly of Planar π-Conjugated Molecules: Adaptable Building Blocks for Organic Nanodevices. Acc. Chem. Res. 2008, 41, 1596–1608. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Medforth, C.J.; Shelnutt, J.A. Porphyrin nanotubes by ionic self-assembly. J. Am. Chem. Soc. 2004, 126, 15954–15955. [Google Scholar] [CrossRef] [PubMed]
- Vázquez-González, V.; Mayoral, M.J.; Chamorro, R.; Hendrix, M.M.R.M.; Voets, I.K.; González-Rodríguez, D. Noncovalent Synthesis of Self-Assembled Nanotubes through Decoupled Hierarchical Cooperative Processes. J. Am. Chem. Soc. 2019, 141, 16432–16438. [Google Scholar] [CrossRef] [PubMed]
- Aguirre, G.; Marcasuzaa, P.; Billon, L. Soft Self-Assembled Mechanoelectrical Transducer Films from Conductive Microgel Waterborne Dispersions. ACS Appl. Mater. Interfaces 2023, 15, 28310–28320. [Google Scholar] [CrossRef]
- Yuen, M.-Y.; Roy, V.A.L.; Lu, W.; Kui, S.C.F.; Tong, G.S.M.; So, M.-H.; Chui, S.S.-Y.; Muccini, M.; Ning, J.Q.; Xu, S.J.; et al. Semiconducting and Electroluminescent Nanowires Self-Assembled from Organoplatinum(II) Complexes. Angew. Chem. Int. Ed. 2008, 47, 9895–9899. [Google Scholar] [CrossRef] [PubMed]
- Strassert, C.A.; Chien, C.-H.; Galvez-Lopez, M.D.; Kourkoulos, D.; Hertel, D.; Meerholz, K.; De Cola, L. Switching On Luminescence by the Self-Assembly of a Platinum(II) Complex into Gelating Nanofibers and Electroluminescent Films. Angew. Chem. Int. Ed. 2011, 50, 946–950. [Google Scholar] [CrossRef]
- Lu, W.; Chen, Y.; Roy, V.A.L.; Chui, S.S.-Y.; Che, C.-M. Supramolecular Polymers and Chromonic Mesophases Self-Organized from Phosphorescent Cationic Organoplatinum(II) Complexes in Water. Angew. Chem. Int. Ed. 2009, 48, 7621–7625. [Google Scholar] [CrossRef]
- Kang, M.; Lee, D.; Bae, H.; Jeong, H.E. Magnetoresponsive Artificial Cilia Self-Assembled with Magnetic Micro/Nanoparticles. ACS Appl. Mater. Interfaces 2022, 14, 55989–55996. [Google Scholar] [CrossRef] [PubMed]
- He, P.-P.; Li, X.-D.; Wang, L.; Wang, H. Bispyrene-Based Self-Assembled Nanomaterials: In Vivo Self-Assembly, Transformation, and Biomedical Effects. Acc. Chem. Res. 2019, 52, 367–378. [Google Scholar] [CrossRef]
- Mauro, M.; Aliprandi, A.; Septiadi, D.; Kehr, N.S.; De Cola, L. When self-assembly meets biology: Luminescent platinum complexes for imaging applications. Chem. Soc. Rev. 2014, 43, 4144–4166. [Google Scholar] [CrossRef] [PubMed]
- Johns, P.V.; Sharma, P.; Shanavas, A. Self-Assembled Nanobiomaterials for Combination Immunotherapy. ACS Appl. Bio Mat. 2023, in press. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Li, Q.; Wu, Y.; Li, X.; Zhou, Y.; Wang, Z.; Liang, H.; Ding, F.; Hong, S.; Steinmetz, N.F.; et al. Molecularly Stimuli-Responsive Self-Assembled Peptide Nanoparticles for Targeted Imaging and Therapy. ACS Nano 2023, 17, 8004–8025. [Google Scholar] [CrossRef] [PubMed]
- Talukdar, D.; Kumar, J.M.; Gole, B. Self-assembled Macrocycles: Design Strategies and Emerging Functions. Cryst. Growth Des. 2023, 23, 7582–7611. [Google Scholar] [CrossRef]
- Abioye, R.O.; Camaño-Echavarría, J.A.; Obeme-Nmom, J.I.; Yiridoe, M.S.; Ogunrinola, O.A.; Ezema, M.D.; Udenigwe, C.C. Self-Assembled Food Peptides: Recent Advances and Perspectives in Food and Health Applications. J. Agric. Food Chem. 2024, 72, 8372–8379. [Google Scholar] [CrossRef] [PubMed]
- Cai, Z.; Li, Z.; Ravaine, S.; He, M.; Song, Y.; Yin, Y.; Zheng, H.; Teng, J.; Zhang, A. From colloidal particles to photonic crystals: Advances in self-assembly and their emerging applications. Chem. Soc. Rev. 2021, 50, 5898–5951. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Liu, G.; Shi, L.; Liu, H.; Wang, T.; Ye, J. Engineering coordination polymers for photocatalysis. Nano Energy 2016, 22, 149–168. [Google Scholar] [CrossRef]
- Chen, Y.L.; Kurniawan, D.; Tsai, M.D.; Chang, J.W.; Chang, Y.N.; Yang, S.C.; Chiang, W.H.; Kung, C.W. Two-dimensional metal–organic framework for post-synthetic immobilization of graphene quantum dots for photoluminescent sensing. Commun. Chem. 2024, 7, 108. [Google Scholar] [CrossRef]
- Arnosti, N.; Meyer, M.; Prescimone, A.; Constable, E.; Housecroft, C. Heteroleptic [Cu(P^P)(N^N)][PF6] Complexes: Effects of Isomer Switching from 2,2′–biquinoline to 1,1′–biisoquinoline. Crystals 2021, 11, 185. [Google Scholar] [CrossRef]
- Orts–Arroyo, M.; Silvestre–Llora, A.; Castro, I.; Martínez–Lillo, J. Molecular Self–Assembly of an Unusual Dinuclear Ruthenium(III) Complex Based on the Nucleobase Guanine. Crystals 2022, 12, 448. [Google Scholar] [CrossRef]
- Yamaguchi, Y.; Ishida, T. [Tb4(OH)4]–Cuboid Complex Dianion Stabilized with Six Carboxylate Bridges and Four Diketonate Caps. Crystals 2022, 12, 402. [Google Scholar] [CrossRef]
- Mazzoni, R.; Roncaglia, F.; Rigamonti, L. When the Metal Makes the Difference: Template Syntheses of Tridentate and Tetradentate Salen–Type Schiff Base Ligands and Related Complexes. Crystals 2021, 11, 483. [Google Scholar] [CrossRef]
- Li, J.; Dun, L.; Zeng, F.; Li, C.; Su, Z. Synthesis, Crystal Structure, and Luminescent Properties of a New Holmium(III) Coordination Polymer Involving 2,5–Dihydroxy–1,4–terephthalic Acid Dianion as Ligand. Crystals 2021, 11, 1294. [Google Scholar] [CrossRef]
- Nieckarz, K.; Nieckarz, D. Monte Carlo Simulations of the Metal–Directed Self–Assembly of Y–Shaped Positional Isomers. Crystals 2022, 12, 492. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Deibe, A.M.; Sanmartín-Matalobos, J. Self–Assembled Complexes: “Love at First Sight”. Crystals 2024, 14, 544. https://doi.org/10.3390/cryst14060544
García-Deibe AM, Sanmartín-Matalobos J. Self–Assembled Complexes: “Love at First Sight”. Crystals. 2024; 14(6):544. https://doi.org/10.3390/cryst14060544
Chicago/Turabian StyleGarcía-Deibe, Ana M., and Jesús Sanmartín-Matalobos. 2024. "Self–Assembled Complexes: “Love at First Sight”" Crystals 14, no. 6: 544. https://doi.org/10.3390/cryst14060544