Next Article in Journal
Electro-Reactivity of Resorcinol on Pt(111) Single-Crystal Plane and Its Influence on the Kinetics of Underpotentially Deposited Hydrogen and Hydrogen Evolution Reaction Processes in 0.1 M NaOH Solution
Previous Article in Journal
Recent Advances in Photonic Crystal and Optical Devices
Previous Article in Special Issue
Monte Carlo Simulations of the Metal-Directed Self-Assembly of Y-Shaped Positional Isomers
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Editorial

Self–Assembled Complexes: “Love at First Sight”

by
Ana M. García-Deibe
1,* and
Jesús Sanmartín-Matalobos
1,2,*
1
Coordination and Supramolecular Chemistry Group (Suprametal), Department of Inorganic Chemistry, Faculty of Chemistry, Universidade de Santiago de Compostela, Avenida das Ciencias s/n, 15782 Santiago de Compostela, Spain
2
Coordination and Supramolecular Chemistry Group (Suprametal), Institute of Materials (iMATUS), Department of Inorganic Chemistry, Faculty of Chemistry, Universidade de Santiago de Compostela, Avenida das Ciencias s/n, 15782 Santiago de Compostela, Spain
*
Authors to whom correspondence should be addressed.
Crystals 2024, 14(6), 544; https://doi.org/10.3390/cryst14060544
Submission received: 20 May 2024 / Accepted: 6 June 2024 / Published: 11 June 2024
(This article belongs to the Special Issue Self-Assembled Complexes: “Love at First Sight”)
Self-assembly is a key process to obtain auto-organized species from disordered components [1,2,3]. The autonomous process occurs spontaneously, and it allows obtaining diverse substances, from simple molecules to macromolecules, as well as 1D, 2D, and 3D materials of different natures. Thus, self-assembly is responsible for the formation of a huge variety of substances, such as oligomeric metal complexes [4,5,6,7,8,9], coordination polymers [10,11,12,13,14], varied (metallo)supramolecular materials [15,16,17,18,19,20,21,22], metal–organic frameworks [23,24], complex materials [25,26,27,28], biomaterials [29,30,31], and nanomaterials [32,33,34,35,36]. Furthermore, they can present amazing properties [37,38,39,40,41,42], so they are useful in diverse fields [43,44,45,46,47,48,49,50].
This Special Issue is centered on coordination, one of the most studied fields of self-assembly. It collects different aspects of several coordination complexes, where self-assembly plays a key role, especially for those with high nuclearity, as coordination polymers. Different techniques were used for their characterization, including powder and single-crystal X–ray diffraction. The compounds collected here exhibit different properties, related to aspects such as magnetism or luminescence.
The article published by Housecroft et al. deals with heteroleptic copper(I) complexes of ligands of 1,1′–biisoquinoline, along with bis(2–(diphenylphosphanyl)phenyl)ether or 9,9–dimethyl–9H–xanthene–4,5–diyl)bis(diphenylphosphane) [51]. In solution and at ambient temperatures, the cationic complexes undergo several concurrent dynamic processes, evidenced in their multinuclear NMR spectra. The photophysical and electrochemical behaviors of these copper (I) complexes were investigated, and the effects of changing from biquinoline to 1,1′–biisoquinoline are described.
Complexes containing purine nucleobases are a subject of interest for the comprehension of mutations and biochemical structures in life sciences. Lillo and coworkers present a new dinuclear ruthenium(III) complex based on guanine (gua), and simultaneously bridged by the two guanines and two chloride anions, with the formula [{Ru(µ–Cl)(µ–gua)}2Cl4]·2H2O [52]. Its well-resolved voltammetric response could provide a step towards developing new ruthenium-based platforms, devices, and modified electrodes, adequate for studying this purine nucleobase.
Increasing the nuclearity, a dianionic cubane-like complex [Tb4(OH)4(tfa)6(hfac)4]2− is presented by Hishida [53], in the presence of two counter cations of [Ni(hfac)(2pyIN)2]+, where Htfa, Hhfac, and 2pyIN are the abbreviations of trifluoroacetic acid, 1,1,1,5,5,5–hexafluoropentane–2,4–dione, and 4,4,5,5–tetramethyl–2–pyridylimidazolin–1–oxyl, respectively. In the crystal structure of the complex, the cuboid is formed by alternate TbIII cations and hydroxy groups. Each terbium center is coordinated to one hfac ligand, while each Tb···Tb diagonal is bridged with a trifluoroacetate anion. The magnetic studies revealed that the complexes are magnetically isolated from each other, and the Tb–O–Tb superexchange coupling is negligible. Practically no 4f–4f superexchange interaction was detected, while there was some ferromagnetic coupling.
The review by Rigamonti and coworkers [54] is focused on the template methods for obtaining oligomeric Schiff base complexes of transition metals, with special attention on the activity of copper(II). They review the reaction of carbonyl compounds (mainly salicylaldehyde) and primary diamines, as well as how the less-common simple condensation, or the typical double condensation occurs. Furthermore, N2O adducts holding a free amino group can further react to yield classic tetradentate salen-type ligands. Several different aspects are studied: the influence of the amine; of the metal cation; of the concentration of reactants; and the possibility of demetalation or transmetalation.
Coordination polymers are one of the key results of self-assembly. Here, the novel coordination polymer {[Ho2(DHTA)3(H2O)5]·H2O}n (DHTA = 2,5–dihydroxy–1,4–terephthalate) was obtained by Su et al. [55], from a hydrothermal synthesis. The crystallographic data show that the polymer contains two eight-coordinate HoIII centers in different coordination environments. This material presents high thermal stability and green luminescence.
Finally, Nieckarz presents a lattice Monte Carlo (MC) simulation technique to extract some chemical information for the supramolecular construction of surface-supported metal–organic networks (SMONs), which are composed of low-coordinated metal atoms and π–aromatic bridging linkers [56]. In this particular case, the studies are centered on a family of ten Y-shaped positional isomers, which are co-adsorbed with trivalent metal cations on a flat metallic surface with (111) geometry. The distribution of active centers within the simulated molecular bricks conditions the two-dimensional (2D) openwork pattern obtained the following: aperiodic mosaics and metal–organic ladders. The theoretical findings could be especially useful for the comprehension of surface-assisted construction of complex nanomaterials stabilized by directional coordination bonds, using scanning tunneling microscopy (STM).

Author Contributions

Conceptualization, A.M.G.-D. and J.S.-M.; writing—original draft preparation, A.M.G.-D. and J.S.-M.; writing—review and editing, A.M.G.-D. and J.S.-M. All authors have read and agreed to the published version of the manuscript.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Lehn, J.M. Toward Complex Matter: Supramolecular Chemistry and Self-Organization. Proc. Natl. Acad. Sci. USA 2002, 99, 4769–4774. [Google Scholar] [CrossRef] [PubMed]
  2. Whitesides, G.M.; Grzybowski, B. Self-Assembly at All Scales. Science 2002, 295, 2418–2421. [Google Scholar] [CrossRef] [PubMed]
  3. Northrop, B.H.; Zheng, Y.-R.; Chi, K.-W.; Stang, P.J. Self-Organization in Coordination-Driven Self-Assembly. Acc. Chem. Res. 2009, 42, 1554–1563. [Google Scholar] [CrossRef] [PubMed]
  4. Sanmartín, J.; Bermejo, M.R.; García-Deibe, A.M.; Llamas-Saiz, A.L. Unusual high nuclearity and pseudo-tetrahedral Zn8O13 core found in a self-assembled complex. Chem. Commun. 2000, 795–796. [Google Scholar] [CrossRef]
  5. Imamura, T.; Fukushima, K. Self-assembly of metallopyridylporphyrin oligomers. Coord. Chem. Rev. 2000, 198, 133–156. [Google Scholar] [CrossRef]
  6. Fondo, M.; Doejo, J.; García-Deibe, A.M.; Sanmartín-Matalobos, J.; Vicente, R. A Ni8 metallacalix [4]arene and a Cu4 molecular rhomboid: Limiting the nuclearity of carboxysalen-like metal complexes. CrystEngComm 2016, 18, 6673–6682. [Google Scholar] [CrossRef]
  7. Yu, X.; Chau, M.-C.; Tang, W.K.; Siu, C.-K.; Yao, Z.-P. Self-Assembled Binuclear Cu(II)–Histidine Complex for Absolute Configuration and Enantiomeric Excess Determination of Naproxen by Tandem Mass Spectrometry. Anal. Chem. 2018, 90, 4089–4097. [Google Scholar] [CrossRef] [PubMed]
  8. Sakamoto, R.; Iwashima, T.; Tsuchiya, M.; Toyoda, R.; Matsuoka, R.; Kögel, J.F.; Kusaka, S.; Hoshiko, K.; Yagi, T.; Nagayama, T.; et al. New aspects in bis and tris(dipyrrinato)metal complexes: Bright luminescence, self-assembled nanoarchitectures, and materials applications. J. Mater. Chem. A 2015, 3, 15357–15371. [Google Scholar] [CrossRef]
  9. Sanmartín-Matalobos, J.; Fondo, M.; García-Deibe, A.M.; Amoza, M.; Bermejo, P.; Domínguez, M.R.; Mota, A.J.; Pérez-Lustres, J.L.; Bhowmick, S.; Das, N. Zinc-mediated diastereoselective assembly of a trinuclear circular helicate is the title of the study. RSC Adv. 2016, 6, 21228–21234. [Google Scholar] [CrossRef]
  10. Luo, J.; Hong, M.; Wang, R.; Cao, R.; Shi, Q.; Weng, J. Self-Assembly of Five Cadmium(II) Coordination Polymers from 4,4′-Diaminodiphenylmethane. Eur. J. Inorg. Chem. 2003, 2003, 1778–1784. [Google Scholar] [CrossRef]
  11. Béziau, A.; Baudron, S.A.; Guenet, A.; Hosseini, M.W. Luminescent Coordination Polymers Based on Self-Assembled Cadmium Dipyrrin Complexes. Chem. Eur. J. 2013, 19, 3215–3223. [Google Scholar] [CrossRef] [PubMed]
  12. Datta, S.; Saha, M.L.; Stang, P.J. Hierarchical Assemblies of Supramolecular Coordination Complexes. Acc. Chem. Res. 2018, 51, 2047–2063. [Google Scholar] [CrossRef] [PubMed]
  13. Han, F.; Liu, Y.; Li, F.; Lu, Y.; Cheng, H.; Lin, Y.; Zhao, T.; Ng, S.H.; Bach, U.; Zheng, J.Y. Self-assembly of coordination polymers on plasmonic surfaces for computer vision decodable, unclonable and colorful security labels. Mater. Chem. C 2019, 7, 13040–13046. [Google Scholar] [CrossRef]
  14. Fromm, K.M. Coordination polymer networks with s-block metal ions. Coord. Chem. Rev. 2008, 252, 856–885. [Google Scholar] [CrossRef]
  15. Mote, N.R.; Patel, K.; Shinde, D.R.; Gaikwad, S.R.; Koshti, V.S.; Gonnade, R.G.; Chikkali, S.H. H-Bonding Assisted Self-Assembly of Anionic and Neutral Ligand on Metal: A Comprehensive Strategy To Mimic Ditopic Ligands in Olefin Polymerization. Inorg. Chem. 2017, 56, 12448–12456. [Google Scholar] [CrossRef]
  16. Wang, W.; Zhou, Z.; Zhou, J.; Shi, B.; Song, B.; Li, X.; Huang, F.; Stang, P.J. Self-Assembled Amphiphilic Janus Double Metallacycle. Inorg. Chem. 2019, 58, 7141–7145. [Google Scholar] [CrossRef] [PubMed]
  17. Chen, M.; Wei, C.; Tao, J.; Wu, X.; Huang, N.; Zhang, G.; Li, L. Supramolecular Polymers Self-Assembled from trans-Bis(pyridine) Dichloropalladium(II) and Platinum(II) Complexes. Chem. Eur. J. 2014, 20, 2812–2818. [Google Scholar] [CrossRef] [PubMed]
  18. García-Deibe, A.M.; Fondo, M.; Corredoira-Vázquez, J.; Fallah, M.S.E.; Sanmartín-Matalobos, J. Hierarchical assembly of antiparallel homochiral sheets formed by hydrogen-bonded helixes of a trapped-valence CoII/CoIII complex. Cryst. Growth Des. 2017, 17, 467–473. [Google Scholar] [CrossRef]
  19. Ziegler, M.; Miranda, J.J.; Anderson, U.N.; Johnson, D.W.; Leary, J.A.; Raymond, K.N. Combinatorial Libraries of Metal-Ligand Assemblies with an Encapsulated Guest Molecule. Angew. Chem. Int. Ed. 2001, 40, 733–735. [Google Scholar] [CrossRef]
  20. Sanmartín-Matalobos, J.; Portela-García, C.; Fondo, M.; García-Deibe, A.M. Chiral Recognition between Metallohelicates via Strong H Bonds: Homochiral Bishelical Coupling and Mesohelical Polymerization. Cryst. Growth Des. 2015, 15, 4318–4323. [Google Scholar] [CrossRef]
  21. Matern, J.; Maisuls, I.; Strassert, C.A.; Fernández, G. Luminescence and Length Control in Nonchelated d8-Metallosupramolecular Polymers through Metal-Metal Interactions. Angew. Chem. Int. Ed. 2022, 61, e202208436. [Google Scholar] [CrossRef]
  22. Legrand, Y.-M.; van der Lee, A.; Barboiu, M. Self-Optimizing Charge-Transfer Energy Phenomena in Metallosupramolecular Complexes by Dynamic Constitutional Self-Sorting. Inorg. Chem. 2007, 46, 9540–9547. [Google Scholar] [CrossRef]
  23. Avci, C.; Imaz, I.; Carné-Sánchez, A.; Pariente, J.A.; Tasios, N.; Pérez-Carvajal, J.; Alonso, M.I.; Blanco, A.; Dijkstra, M.; López, C.; et al. Self-assembly of polyhedral metal–organic framework particles into three-dimensional ordered superstructures. Nat. Chem. 2018, 10, 78–84. [Google Scholar] [CrossRef] [PubMed]
  24. Vardhan, H.; Yusubov, M.; Verpoort, F. Self-assembled metal–organic polyhedra: An overview of various applications. Coord. Chem. Rev. 2016, 306, 171–194. [Google Scholar] [CrossRef]
  25. Ikkala, O.; ten Brinke, G. Functional Materials Based on Self-Assembly of Polymeric Supramolecules. Science 2002, 295, 2407–2409. [Google Scholar] [CrossRef]
  26. Nakamura, T.; Ube, H.; Miyake, R.; Shionoya, M. A C60-Templated Tetrameric Porphyrin Barrel Complex via Zinc-Mediated Self-Assembly Utilizing Labile Capping Ligands. J. Am. Chem. Soc. 2013, 135, 18790–18793. [Google Scholar] [CrossRef] [PubMed]
  27. Wang, L.; Liu, B. Self-Assembled Ring-Based Complex Colloidal Particles by Lock-And-Key Interaction and Their Self-Assembly into Unusual Colloidal Crystals. Langmuir 2024, 40, 9205–9214. [Google Scholar] [CrossRef] [PubMed]
  28. Chang, W.S.; Liu, H.-J.; Tra, V.T.; Chen, J.-W.; Wei, T.-C.; Tzeng, W.Y.; Zhu, Y.; Kuo, H.-H.; Hsieh, Y.-H.; Lin, J.-C.; et al. Tuning Electronic Transport in a Self-Assembled Nanocomposite. ACS Nano 2014, 8, 6242–6249. [Google Scholar] [CrossRef]
  29. Park, H.; Kim, K.Y.; Jung, S.H.; Choi, Y.; Sato, H.; Jung, J.H. Different Origins of Strain-Induced Chirality Inversion of Co2+-Triggered Supramolecular Peptide Polymers. Chem. Mater. 2018, 30, 2074–2083. [Google Scholar] [CrossRef]
  30. Jang, Y.; Champion, J.A. Self-Assembled Materials Made from Functional Recombinant Proteins. Acc. Chem. Res. 2016, 49, 2188–2198. [Google Scholar] [CrossRef]
  31. Katyal, P.; Meleties, M.; Montclare, J.K. Self-Assembled Protein- and Peptide-Based Nanomaterials. ACS Biomater. Sci. Eng. 2019, 5, 4132–4147. [Google Scholar] [CrossRef] [PubMed]
  32. Fendler, J.H. Self-Assembled Nanostructured Materials. Chem. Mater. 1996, 8, 1616–1624. [Google Scholar] [CrossRef]
  33. Lu, W.; Roya, V.A.L.; Che, C.-M. Self-assembled nanostructures with tridentate cyclometalated platinum(II) complexes. Chem. Commun. 2006, 3972–3974. [Google Scholar] [CrossRef] [PubMed]
  34. Zang, L.; Che, Y.; Moore, J.S. One-Dimensional Self-Assembly of Planar π-Conjugated Molecules: Adaptable Building Blocks for Organic Nanodevices. Acc. Chem. Res. 2008, 41, 1596–1608. [Google Scholar] [CrossRef] [PubMed]
  35. Wang, Z.; Medforth, C.J.; Shelnutt, J.A. Porphyrin nanotubes by ionic self-assembly. J. Am. Chem. Soc. 2004, 126, 15954–15955. [Google Scholar] [CrossRef] [PubMed]
  36. Vázquez-González, V.; Mayoral, M.J.; Chamorro, R.; Hendrix, M.M.R.M.; Voets, I.K.; González-Rodríguez, D. Noncovalent Synthesis of Self-Assembled Nanotubes through Decoupled Hierarchical Cooperative Processes. J. Am. Chem. Soc. 2019, 141, 16432–16438. [Google Scholar] [CrossRef] [PubMed]
  37. Aguirre, G.; Marcasuzaa, P.; Billon, L. Soft Self-Assembled Mechanoelectrical Transducer Films from Conductive Microgel Waterborne Dispersions. ACS Appl. Mater. Interfaces 2023, 15, 28310–28320. [Google Scholar] [CrossRef]
  38. Yuen, M.-Y.; Roy, V.A.L.; Lu, W.; Kui, S.C.F.; Tong, G.S.M.; So, M.-H.; Chui, S.S.-Y.; Muccini, M.; Ning, J.Q.; Xu, S.J.; et al. Semiconducting and Electroluminescent Nanowires Self-Assembled from Organoplatinum(II) Complexes. Angew. Chem. Int. Ed. 2008, 47, 9895–9899. [Google Scholar] [CrossRef] [PubMed]
  39. Strassert, C.A.; Chien, C.-H.; Galvez-Lopez, M.D.; Kourkoulos, D.; Hertel, D.; Meerholz, K.; De Cola, L. Switching On Luminescence by the Self-Assembly of a Platinum(II) Complex into Gelating Nanofibers and Electroluminescent Films. Angew. Chem. Int. Ed. 2011, 50, 946–950. [Google Scholar] [CrossRef]
  40. Lu, W.; Chen, Y.; Roy, V.A.L.; Chui, S.S.-Y.; Che, C.-M. Supramolecular Polymers and Chromonic Mesophases Self-Organized from Phosphorescent Cationic Organoplatinum(II) Complexes in Water. Angew. Chem. Int. Ed. 2009, 48, 7621–7625. [Google Scholar] [CrossRef]
  41. Kang, M.; Lee, D.; Bae, H.; Jeong, H.E. Magnetoresponsive Artificial Cilia Self-Assembled with Magnetic Micro/Nanoparticles. ACS Appl. Mater. Interfaces 2022, 14, 55989–55996. [Google Scholar] [CrossRef] [PubMed]
  42. He, P.-P.; Li, X.-D.; Wang, L.; Wang, H. Bispyrene-Based Self-Assembled Nanomaterials: In Vivo Self-Assembly, Transformation, and Biomedical Effects. Acc. Chem. Res. 2019, 52, 367–378. [Google Scholar] [CrossRef]
  43. Mauro, M.; Aliprandi, A.; Septiadi, D.; Kehr, N.S.; De Cola, L. When self-assembly meets biology: Luminescent platinum complexes for imaging applications. Chem. Soc. Rev. 2014, 43, 4144–4166. [Google Scholar] [CrossRef] [PubMed]
  44. Johns, P.V.; Sharma, P.; Shanavas, A. Self-Assembled Nanobiomaterials for Combination Immunotherapy. ACS Appl. Bio Mat. 2023, in press. [Google Scholar] [CrossRef] [PubMed]
  45. Zhou, Y.; Li, Q.; Wu, Y.; Li, X.; Zhou, Y.; Wang, Z.; Liang, H.; Ding, F.; Hong, S.; Steinmetz, N.F.; et al. Molecularly Stimuli-Responsive Self-Assembled Peptide Nanoparticles for Targeted Imaging and Therapy. ACS Nano 2023, 17, 8004–8025. [Google Scholar] [CrossRef] [PubMed]
  46. Talukdar, D.; Kumar, J.M.; Gole, B. Self-assembled Macrocycles: Design Strategies and Emerging Functions. Cryst. Growth Des. 2023, 23, 7582–7611. [Google Scholar] [CrossRef]
  47. Abioye, R.O.; Camaño-Echavarría, J.A.; Obeme-Nmom, J.I.; Yiridoe, M.S.; Ogunrinola, O.A.; Ezema, M.D.; Udenigwe, C.C. Self-Assembled Food Peptides: Recent Advances and Perspectives in Food and Health Applications. J. Agric. Food Chem. 2024, 72, 8372–8379. [Google Scholar] [CrossRef] [PubMed]
  48. Cai, Z.; Li, Z.; Ravaine, S.; He, M.; Song, Y.; Yin, Y.; Zheng, H.; Teng, J.; Zhang, A. From colloidal particles to photonic crystals: Advances in self-assembly and their emerging applications. Chem. Soc. Rev. 2021, 50, 5898–5951. [Google Scholar] [CrossRef] [PubMed]
  49. Zhang, H.; Liu, G.; Shi, L.; Liu, H.; Wang, T.; Ye, J. Engineering coordination polymers for photocatalysis. Nano Energy 2016, 22, 149–168. [Google Scholar] [CrossRef]
  50. Chen, Y.L.; Kurniawan, D.; Tsai, M.D.; Chang, J.W.; Chang, Y.N.; Yang, S.C.; Chiang, W.H.; Kung, C.W. Two-dimensional metal–organic framework for post-synthetic immobilization of graphene quantum dots for photoluminescent sensing. Commun. Chem. 2024, 7, 108. [Google Scholar] [CrossRef]
  51. Arnosti, N.; Meyer, M.; Prescimone, A.; Constable, E.; Housecroft, C. Heteroleptic [Cu(P^P)(N^N)][PF6] Complexes: Effects of Isomer Switching from 2,2′–biquinoline to 1,1′–biisoquinoline. Crystals 2021, 11, 185. [Google Scholar] [CrossRef]
  52. Orts–Arroyo, M.; Silvestre–Llora, A.; Castro, I.; Martínez–Lillo, J. Molecular Self–Assembly of an Unusual Dinuclear Ruthenium(III) Complex Based on the Nucleobase Guanine. Crystals 2022, 12, 448. [Google Scholar] [CrossRef]
  53. Yamaguchi, Y.; Ishida, T. [Tb4(OH)4]–Cuboid Complex Dianion Stabilized with Six Carboxylate Bridges and Four Diketonate Caps. Crystals 2022, 12, 402. [Google Scholar] [CrossRef]
  54. Mazzoni, R.; Roncaglia, F.; Rigamonti, L. When the Metal Makes the Difference: Template Syntheses of Tridentate and Tetradentate Salen–Type Schiff Base Ligands and Related Complexes. Crystals 2021, 11, 483. [Google Scholar] [CrossRef]
  55. Li, J.; Dun, L.; Zeng, F.; Li, C.; Su, Z. Synthesis, Crystal Structure, and Luminescent Properties of a New Holmium(III) Coordination Polymer Involving 2,5–Dihydroxy–1,4–terephthalic Acid Dianion as Ligand. Crystals 2021, 11, 1294. [Google Scholar] [CrossRef]
  56. Nieckarz, K.; Nieckarz, D. Monte Carlo Simulations of the Metal–Directed Self–Assembly of Y–Shaped Positional Isomers. Crystals 2022, 12, 492. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

García-Deibe, A.M.; Sanmartín-Matalobos, J. Self–Assembled Complexes: “Love at First Sight”. Crystals 2024, 14, 544. https://doi.org/10.3390/cryst14060544

AMA Style

García-Deibe AM, Sanmartín-Matalobos J. Self–Assembled Complexes: “Love at First Sight”. Crystals. 2024; 14(6):544. https://doi.org/10.3390/cryst14060544

Chicago/Turabian Style

García-Deibe, Ana M., and Jesús Sanmartín-Matalobos. 2024. "Self–Assembled Complexes: “Love at First Sight”" Crystals 14, no. 6: 544. https://doi.org/10.3390/cryst14060544

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop