Synthesis of Nanocrystalline Mn-Doped Bi2Te3 Thin Films via Magnetron Sputtering
Abstract
:1. Introduction
2. Materials and Methods
2.1. Thin Film Growth
2.2. Structural Characterization
2.3. Electron Microscopy
2.4. Magnetic Characterization
2.5. X-Ray Spectroscopy
3. Results
3.1. Thin Film Growth and Structural Characterization
3.2. Electron Microscopy
3.3. Magnetic Characterization
3.4. X-Ray Spectroscopy
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Qi, X.L.; Hughes, T.L.; Zhang, S.C. Topological Field Theory of Time-Reversal Invariant Insulators. Phys. Rev. B 2008, 78, 195424. [Google Scholar] [CrossRef]
- Zhang, S.C.; Zhang, H.; Liu, C.X.; Qi, X.L.; Dai, X.; Fang, Z. Topological Insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a Single Dirac Cone on the Surface. Nat. Phys. 2009, 5, 438–442. [Google Scholar] [CrossRef]
- Qi, X.L.; Li, R.; Zang, J.; Zhang, S.C. Inducing a Magnetic Monopole with Topological Surface States. Science 2009, 323, 1184–1187. [Google Scholar] [CrossRef] [PubMed]
- Hasan, M.Z.; Kane, C.L. Colloquium: Topological Insulators. Rev. Mod. Phys. 2010, 82, 3045–3067. [Google Scholar] [CrossRef]
- Qi, X.L.; Zhang, S.C. Topological Insulators and Superconductors. Rev. Mod. Phys. 2011, 83, 1057–1110. [Google Scholar] [CrossRef]
- Chang, C.Z.; Zhang, J.; Feng, X.; Shen, J.; Zhang, Z.; Guo, M.; Li, K.; Ou, Y.; Wei, P.; Wang, L.L.; et al. Experimental Observation of the Quantum Anomalous Hall Effect in a Magnetic Topological Insulator. Science 2013, 340, 167–170. [Google Scholar] [CrossRef]
- Chen, Y.L.; Chu, J.H.; Analytis, J.G.; Liu, Z.K.; Igarashi, K.; Kuo, H.H.; Qi, X.L.; Mo, S.K.; Moore, R.G.; Lu, D.H.; et al. Massive Dirac Fermion on the Surface of a Magnetically Doped Topological Insulator. Science 2010, 329, 659–662. [Google Scholar] [CrossRef] [PubMed]
- Tokura, Y.; Yasuda, K.; Tsukazaki, A. Magnetic Topological Insulators. Nat. Rev. Phys. 2019, 1, 126–143. [Google Scholar] [CrossRef]
- Hor, Y.S.; Roushan, P.; Beidenkopf, H.; Seo, J.; Qu, D.; Checkelsky, J.G.; Wray, L.A.; Hsieh, D.; Xia, Y.; Xu, S.Y.; et al. Development of Ferromagnetism in the Doped Topological Insulator Bi2-xMnxTe3. Phys. Rev. B 2010, 81, 195203. [Google Scholar] [CrossRef]
- Watson, M.D.; Collins-McIntyre, L.J.; Shelford, L.R.; Coldea, A.I.; Prabhakaran, D.; Speller, S.C.; Mousavi, T.; Grovenor, C.R.M.; Salman, Z.; Giblin, S.R.; et al. Study of the Structural, Electric and Magnetic Properties of Mn-Doped Bi2Te3 Single Crystals. New J. Phys. 2013, 15, 103016. [Google Scholar] [CrossRef]
- Lee, J.S.; Richardella, A.; Rench, D.W.; Fraleigh, R.D.; Flanagan, T.C.; Borchers, J.A.; Tao, J.; Samarth, N. Ferromagnetism and spin-dependent transport in n-type Mn-doped bismuth telluride thin films. Phys. Rev. B 2014, 89, 174425. [Google Scholar] [CrossRef]
- Ginley, T.P.; Wang, Y.; Law, S. Topological Insulator Film Growth by Molecular Beam Epitaxy: A Review. Crystals 2016, 6, 154. [Google Scholar] [CrossRef]
- Carva, K.; Kudrnovský, J.; Máca, F.; Drchal, V.; Turek, I.; Baláž, P.; Tkáč, V.; Holý, V.; Sechovský, V.; Honolka, J. Electronic and Transport Properties of the Mn-Doped Topological Insulator Bi2Te3: A First-Principles Study. Phys. Rev. B 2016, 93, 214409. [Google Scholar] [CrossRef]
- Hosokawa, S.; Stellhorn, J.R.; Matsushita, T.; Happo, N.; Kimura, K.; Hayashi, K.; Ebisu, Y.; Ozaki, T.; Ikemoto, H.; Setoyama, H.; et al. Impurity Position and Lattice Distortion in a Mn-Doped Bi2Te3 Topological Insulator Investigated by X-Ray Fluorescence Holography and X-Ray Absorption Fine Structure. Phys. Rev. B 2017, 96, 214207. [Google Scholar] [CrossRef]
- Antonov, V.N.; Bekenov, L.V.; Uba, S.; Ernst, A. Electronic Structure and X-Ray Magnetic Circular Dichroism in Mn-Doped Topological Insulators Bi2Se3 and Bi2Te3. Phys. Rev. B 2017, 96, 224434. [Google Scholar] [CrossRef]
- Zhang, D.; Richardella, A.; Rench, D.W.; Xu, S.Y.; Kandala, A.; Flanagan, T.C.; Beidenkopf, H.; Yeats, A.L.; Buckley, B.B.; Klimov, P.V.; et al. Interplay between Ferromagnetism, Surface States, and Quantum Corrections in a Magnetically Doped Topological Insulator. Phys. Rev. B 2012, 86, 205127. [Google Scholar] [CrossRef]
- Teng, J.; Liu, N.; Li, Y. Mn-Doped Topological Insulators: A Review. J. Semicond. 2019, 40, 081507. [Google Scholar] [CrossRef]
- Hadia, N.M.A.; Mohamed, S.H.; Mohamed, W.S.; Alzaid, M.; Khan, M.T.; Awad, M.A. Structural, optical and electrical properties of Bi2-xMnxTe3 thin films. J. Mater. Sci. Mater. Electron. 2022, 33, 158–166. [Google Scholar] [CrossRef]
- Kander, N.S.; Biswas, S.; Guchhait, S.; Singha, T.; Das, A.K. The role of Mn in Bi2-xMnxTe3 topological insulator: Structural, compositional, magnetic, and weak anti-localization property analysis. J. Mater. Sci. Mater. Electron. 2023, 34, 1198. [Google Scholar] [CrossRef]
- Yu, R.; Zhang, W.; Zhang, H.J.; Zhang, S.C.; Dai, X.; Fang, Z. Quantized Anomalous Hall Effect in Magnetic Topological Insulators. Science 2010, 329, 61–64. [Google Scholar] [CrossRef]
- Zhang, J.M.; Ming, W.; Huang, Z.; Liu, G.B.; Kou, X.; Fan, Y.; Wang, K.L.; Yao, Y. Stability, Electronic, and Magnetic Properties of the Magnetically Doped Topological Insulators Bi2Se3, Bi2Te3, and Sb2Te3. Phys. Rev. B 2013, 88, 235131. [Google Scholar] [CrossRef]
- Kou, X.; Lang, M.; Fan, Y.; Jiang, Y.; Nie, T.; Zhang, J.; Jiang, W.; Wang, Y.; Yao, Y.; He, L.; et al. Interplay between Different Magnetisms in Cr-Doped Topological Insulators. ACS Nano 2013, 7, 9205–9212. [Google Scholar] [CrossRef]
- Ye, M.; Li, W.; Zhu, S.; Takeda, Y.; Saitoh, Y.; Wang, J.; Pan, H.; Nurmamat, M.; Sumida, K.; Ji, F.; et al. Carrier-Mediated Ferromagnetism in the Magnetic Topological Insulator Cr-doped (Sb,Bi)2Te3. Nat. Commun. 2015, 6, 8913. [Google Scholar] [CrossRef]
- Tcakaev, A.; Zabolotnyy, V.B.; Green, R.J.; Peixoto, T.R.F.; Stier, F.; Dettbarn, M.; Schreyeck, S.; Winnerlein, M.; Vidal, R.C.; Schatz, S.; et al. Comparing Magnetic Ground-State Properties of the V- and Cr-Doped Topological Insulator (Bi,Sb)2Te3. Phys. Rev. B 2020, 101, 045127. [Google Scholar] [CrossRef]
- Choi, Y.H.; Jo, N.H.; Lee, K.J.; Yoon, J.B.; You, C.Y.; Jung, M.H. Transport and Magnetic Properties of Cr-, Fe-, Cu-Doped Topological Insulators. J. Appl. Phys. 2011, 109, 07E312. [Google Scholar] [CrossRef]
- Zhao, W.; Cortie, D.; Chen, L.; Li, Z.; Yue, Z.; Wang, X. Quantum Oscillations in Iron-Doped Single Crystals of the Topological Insulator Sb2Te3. Phys. Rev. B 2019, 99, 165133. [Google Scholar] [CrossRef]
- Figueroa, A.I.; van der Laan, G.; Collins-McIntyre, L.J.; Cibin, G.; Dent, A.J.; Hesjedal, T. Local Structure and Bonding of Transition Metal Dopants in Bi2Se3 Topological Insulator Thin Films. J. Phys. Chem. C 2015, 119, 17344–17351. [Google Scholar] [CrossRef]
- Abdalla, L.B.; Seixas, L.; Schmidt, T.M.; Miwa, R.H.; Fazzio, A. Topological Insulator Bi2Se3(111) Surface Doped with Transition Metals: An ab initio Investigation. Phys. Rev. B 2013, 88, 045312. [Google Scholar] [CrossRef]
- Kander, N.S.; Islam, S.; Guchhait, S.; Das, A.K. The Effect of Fe-Doping on Structural, Elemental, Magnetic, and Weak Anti-Localization Properties of Bi2Se3 Topological Insulator. Appl. Phys. A 2023, 129, 253. [Google Scholar] [CrossRef]
- Deng, B.; Zhang, Y.; Zhang, S.B.; Wang, Y.; He, K.; Zhu, J. Realization of Stable Ferromagnetic Order in a Topological Insulator: Codoping-Enhanced Magnetism in 4f Transition Metal Doped Bi2Te3. Phys. Rev. B 2016, 94, 054113. [Google Scholar] [CrossRef]
- Liu, J.; Hesjedal, T. Magnetic Topological Insulator Heterostructures: A Review. Adv. Mater. 2023, 35, 2102427. [Google Scholar] [CrossRef] [PubMed]
- DC, M.; Grassi, R.; Chen, J.Y.; Jamali, M.; Hickey, D.R.; Zhang, D.; Zhao, Z.; Li, H.; Quarterman, P.; Lv, Y.; et al. Room-Temperature High Spin-Orbit Torque due to Quantum Confinement in Sputtered BixSe(1-x) films. Nat. Mater. 2018, 17, 800–807. [Google Scholar] [CrossRef] [PubMed]
- Lu, Q.; Li, P.; Guo, Z.; Dong, G.; Peng, B.; Zha, X.; Min, T.; Zhou, Z.; Liu, M. Giant Tunable Spin Hall Angle in Sputtered Bi2Se3 Controlled by an Electric Field. Nat. Commun. 2022, 13, 1650. [Google Scholar] [CrossRef]
- Xu, S.Y.; Neupane, M.; Liu, C.; Zhang, D.; Richardella, A.; Wray, L.A.; Alidoust, N.; Leandersson, M.; Balasubramanian, T.; Sánchez-Barriga, J.; et al. Hedgehog Spin Texture and Berry’s Phase Tuning in a Magnetic Topological Insulator. Nat. Phys. 2012, 8, 616–622. [Google Scholar] [CrossRef]
- Harrison, S.E.; Li, S.; Huo, Y.; Zhou, B.; Chen, Y.L.; Harris, J.S. Two-step growth of high quality Bi2Te3 thin films on Al2O3 (0001) by molecular beam epitaxy. Appl. Phys. Lett. 2013, 102, 171906. [Google Scholar] [CrossRef]
- Pilidi, A.; Speliotis, T. Anomalous Hall Effect in a Magnetic Topological Insulator (BiMn)2Te3. IEEE Trans. Magn. 2019, 55, 1–6. [Google Scholar] [CrossRef]
- Awana, G.; Fujita, R.; Frisk, A.; Chen, P.; Yao, Q.; Caruana, A.J.; Kinane, C.J.; Steinke, N.J.; Langridge, S.; Olalde-Velasco, P.; et al. Critical analysis of proximity-induced magnetism in MnTe/Bi2Te3 heterostructures. Phys. Rev. Mater. 2022, 6, 053402. [Google Scholar] [CrossRef]
- van der Laan, G. Applications of Soft X-Ray Magnetic Dichroism. J. Phys. Conf. Ser. 2013, 430, 012127. [Google Scholar] [CrossRef]
- Ye, M.; Eremeev, S.V.; Kuroda, K.; Krasovskii, E.E.; Chulkov, E.V.; Takeda, Y.; Saitoh, Y.; Okamoto, K.; Zhu, S.Y.; Miyamoto, K.; et al. Quasiparticle interference on the surface of Bi2Se3 induced by cobalt adatom in the absence of ferromagnetic ordering. Phys. Rev. B 2012, 85, 205317. [Google Scholar] [CrossRef]
- Honolka, J.; Khajetoorians, A.A.; Sessi, V.; Wehling, T.O.; Stepanow, S.; Mi, J.L.; Iversen, B.B.; Schlenk, T.; Wiebe, J.; Brookes, N.B.; et al. In-Plane Magnetic Anisotropy of Fe Atoms on Bi2Se3(111). Phys. Rev. Lett. 2012, 108, 256811. [Google Scholar] [CrossRef]
- Shelford, L.R.; Hesjedal, T.; Collins-McIntyre, L.; Dhesi, S.S.; Maccherozzi, F.; van der Laan, G. Electronic structure of Fe and Co magnetic adatoms on Bi2Te3 surfaces. Phys. Rev. B 2012, 86, 081304. [Google Scholar] [CrossRef]
- Collins-McIntyre, L.J.; Watson, M.D.; Baker, A.A.; Zhang, S.L.; Coldea, A.I.; Harrison, S.E.; Pushp, A.; Kellock, A.J.; Parkin, S.S.P.; van der Laan, G.; et al. X-Ray Magnetic Spectroscopy of MBE-Grown Mn-Doped Bi2Se3 Thin Films. AIP Adv. 2014, 4, 127136. [Google Scholar] [CrossRef]
- Choi, Y.H.; Jo, N.H.; Lee, K.J.; Lee, H.W.; Jo, Y.H.; Kajino, J.; Takabatake, T.; Ko, K.T.; Park, J.H.; Jung, M.H. Simple Tuning of Carrier Type in Topological Insulator Bi2Se3 by Mn Doping. Appl. Phys. Lett. 2012, 101, 152103. [Google Scholar] [CrossRef]
- Collins-McIntyre, L.J.; Harrison, S.E.; Schönherr, P.; Steinke, N.J.; Kinane, C.J.; Charlton, T.R.; Alba-Veneroa, D.; Pushp, A.; Kellock, A.J.; Parkin, S.S.P.; et al. Magnetic Ordering in Cr-Doped Bi2Se3 Thin Films. Europhys. Lett. 2014, 107, 57009. [Google Scholar] [CrossRef]
- Thole, B.T.; Carra, P.; Sette, F.; van der Laan, G. X-ray circular dichroism as a probe of orbital magnetization. Phys. Rev. Lett. 1992, 68, 1943–1946. [Google Scholar] [CrossRef]
- van der Laan, G.; Figueroa, A.I. X-ray magnetic circular dichroism—A versatile tool to study magnetism. Coord. Chem. Rev. 2014, 277–278, 95–129. [Google Scholar] [CrossRef]
- Figueroa, A.I.; Hesjedal, T.; Steinke, N.J. Magnetic order in 3D topological insulators—Wishful thinking or gateway to emergent quantum effects? Appl. Phys. Lett. 2020, 117, 150502. [Google Scholar] [CrossRef]
- Steinke, N.J.; Zhang, S.L.; Baker, P.J.; Duffy, L.B.; Kronast, F.; Krieger, J.; Salman, Z.; Prokscha, T.; Suter, A.; Langridge, S.; et al. Magnetic correlations in the magnetic topological insulator (Cr,Sb)2Te3. Phys. Rev. B 2022, 106, 224425. [Google Scholar] [CrossRef]
- Fan, T.; Khang, N.H.D.; Nakano, S.; Hai, P.N. Ultrahigh efficient spin orbit torque magnetization switching in fully sputtered topological insulator and ferromagnet multilayers. Sci. Rep. 2022, 12, 2998. [Google Scholar] [CrossRef]
- Yue, C.; Jiang, S.; Zhu, H.; Chen, L.; Sun, Q.; Zhang, D.W. Device Applications of Synthetic Topological Insulator Nanostructures. Electronics 2018, 7, 225. [Google Scholar] [CrossRef]
- Gilbert, M.J. Topological electronics. Commun. Phys. 2021, 4, 70. [Google Scholar] [CrossRef]
- Breunig, O.; Ando, Y. Opportunities in topological insulator devices. Nat. Rev. Phys. 2022, 4, 184–193. [Google Scholar] [CrossRef]
- Kumar, P.; Kumar, R.; Kumar, S.; Khanna, M.K.; Kumar, R.; Kumar, V.; Gupta, A. Interacting with Futuristic Topological Quantum Materials: A Potential Candidate for Spintronics Devices. Magnetochemistry 2023, 9, 73. [Google Scholar] [CrossRef]
- Jin, K.H.; Jiang, W.; Sethi, G.; Liu, F. Topological quantum devices: A review. Nanoscale 2023, 15, 12787–12817. [Google Scholar] [CrossRef]
- Zhang, D.; Shi, M.; Zhu, T.; Xing, D.; Zhang, H.; Wang, J. Topological Axion States in the Magnetic Insulator MnBi2Te4 with the Quantized Magnetoelectric Effect. Phys. Rev. Lett. 2019, 122, 206401. [Google Scholar] [CrossRef]
- Li, J.; Li, Y.; Du, S.; Wang, Z.; Gu, B.L.; Zhang, S.C.; He, K.; Duan, W.; Xu, Y. Intrinsic Magnetic Topological Insulators in van der Waals Layered MnBi2Te4-Family Materials. Sci. Adv. 2024, 5, 5685. [Google Scholar] [CrossRef]
Nominal Mn Concentration (at. %) | Measured Mn Concentration (at. %) | Measured Bi Concentration (at. %) | Measured Te Concentration (at. %) |
---|---|---|---|
0.8 | 0.8 ± 0.1 | 38.7 ± 0.4 | 58.8 ± 0.5 |
1.7 | 1.6 ± 0.1 | 40.1 ± 0.4 | 58.3 ± 0.5 |
3.5—low power | 3.5 ± 0.4 | 39.5 ± 0.2 | 57.0 ± 0.3 |
3.5—pulsed | 3.8 ± 0.3 | 38.4 ± 0.1 | 56.8 ± 0.1 |
7.0 | 6.0 ± 0.5 | 38.0 ± 0.5 | 56.0 ± 0.5 |
10.6 | 8.5 ± 0.1 | 38.2 ± 1.0 | 53.4 ± 1.0 |
17.7 | 11.7 ± 0.1 | 36.7 ± 0.1 | 51.6 ± 0.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bibby, J.; Singh, A.; Heppell, E.; Bollard, J.; Achinuq, B.; Haigh, S.J.; van der Laan, G.; Hesjedal, T. Synthesis of Nanocrystalline Mn-Doped Bi2Te3 Thin Films via Magnetron Sputtering. Crystals 2025, 15, 54. https://doi.org/10.3390/cryst15010054
Bibby J, Singh A, Heppell E, Bollard J, Achinuq B, Haigh SJ, van der Laan G, Hesjedal T. Synthesis of Nanocrystalline Mn-Doped Bi2Te3 Thin Films via Magnetron Sputtering. Crystals. 2025; 15(1):54. https://doi.org/10.3390/cryst15010054
Chicago/Turabian StyleBibby, Joshua, Angadjit Singh, Emily Heppell, Jack Bollard, Barat Achinuq, Sarah J. Haigh, Gerrit van der Laan, and Thorsten Hesjedal. 2025. "Synthesis of Nanocrystalline Mn-Doped Bi2Te3 Thin Films via Magnetron Sputtering" Crystals 15, no. 1: 54. https://doi.org/10.3390/cryst15010054
APA StyleBibby, J., Singh, A., Heppell, E., Bollard, J., Achinuq, B., Haigh, S. J., van der Laan, G., & Hesjedal, T. (2025). Synthesis of Nanocrystalline Mn-Doped Bi2Te3 Thin Films via Magnetron Sputtering. Crystals, 15(1), 54. https://doi.org/10.3390/cryst15010054