Analysis of Human Kidney Stones Using Advanced Characterization Techniques
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
3. Results and Discussion
3.1. Calcium Stones
3.1.1. Calcium Oxalate Kidney Stones
Analysis of Kidney Stones M1, M3, M5, M6, and F6
Analysis of Kidney Stones F4, F5, and F8
3.1.2. Calcium Phosphate Kidney Stones (F1, F2, F3, M2, M4, and M7)
3.2. Non-Calcium Stones (F7 and M8)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, I.H.; Yang, W.; Meyers, M.A. Alligator osteoderms: Mechanical behavior and hierarchical structure. Mater. Sci. Eng. C Mater. Biol. Appl. 2014, 35, 441–448. [Google Scholar] [CrossRef] [PubMed]
- Morgan, E.F.; Unnikrisnan, G.U.; Hussein, A.I. Bone mechanical properties in healthy and diseased states. Annu. Rev. Biomed. Eng. 2018, 20, 119–143. [Google Scholar] [CrossRef] [PubMed]
- Bertazzo, S.; Gentleman, E.; Cloyd, K.L.; Chester, A.H.; Yacoub, M.H.; Stevens, M.M. Nano-analytical electron microscopy reveals fundamental insights into human cardiovascular tissue calcification. Nat. Mater. 2013, 12, 576–583. [Google Scholar] [CrossRef] [PubMed]
- Tan, A.C.; Pilgrim, M.G.; Fearn, S.; Bertazzo, S.; Tsolaki, E.; Morrell, A.P.; Nittala, M.G. Calcified nodules in retinal drusen are associated with disease progression in age-related macular degeneration. Sci. Transl. Med. 2018, 10, eaat4544. [Google Scholar] [CrossRef] [PubMed]
- Durgawale, P.; Shariff, A.; Hendre, A.; Patil, S.; Sontakke, A. Chemical analysis of stones and its significance in urolithiasis. Biomed. Res. India 2010, 21, 305–310. [Google Scholar]
- Radi, M.J. Calcium oxalate crystals in breast biopsies. An overlooked form of microcalcification associated with benign breast disease. Arch. Pathol. Lab. Med. 1989, 113, 1367–1369. [Google Scholar] [PubMed]
- Aggarwal, K.P.; Narula, S.; Kakkar, M.; Tandon, C. Nephrolithiasis: Molecular mechanism of renal stone formation and the critical role played by modulators. BioMed Res. Int. 2013, 2013, 292953. [Google Scholar] [CrossRef]
- Cox, R.F.; Hernandez-Santana, A.; Ramdass, S.; McMahon, G.; Harmey, J.H.; Morgan, M.P. Microcalcifications in breast cancer: Novel insights into the molecular mechanism and functional consequence of mammary mineralisation. Br. J. Cancer 2012, 106, 525–537. [Google Scholar] [CrossRef]
- Morgan, M.P.; Cooke, M.M.; Christopherson, P.A.; Westfall, P.R.; McCarthy, G.M. Calcium hydroxyapatite promotes mitogenesis and matrix metalloproteinase expression in human breast cancer cell lines. Mol. Carcinog. 2001, 32, 111–117. [Google Scholar] [CrossRef] [PubMed]
- Hutcheson, J.D.; Goettsch, C.; Bertazzo, S.; Maldonado, N.; Ruiz, J.L.; Goh, W.; Yabusaki, K.; Faits, T.; Bouten, C.; Franck, G.; et al. Genesis and growth of extracellular-vesicle-derived microcalcification in atherosclerotic plaques. Nat. Mater. 2016, 15, 335–343. [Google Scholar] [CrossRef] [PubMed]
- Kapustin, A.N.; Chatrou, M.L.; Drozdov, I.; Zheng, Y.; Davidson, S.M.; Soong, D.; Furmanik, M.; Sanchis, P.; De Rosales, R.T.M.; Alvarez-Hernandez, D.; et al. Vascular smooth muscle cell calcification is mediated by regulated exosome secretion. Circ. Res. 2015, 116, 1312–1323. [Google Scholar] [CrossRef] [PubMed]
- Baker, R.N.; Rogers, K.D.; Shepherd, N.; Stone, N. Analysis of breast tissue calcifications using FTIR spectroscopy. In Diagnostic Optical Spectroscopy in Biomedicine IV, Proceedings of SPIE-OSA Biomedical Optics, Munich, Germany, 17–21 June 2007; Optica Publishing Group: Washington, DC, USA, 2007; Volume 6628, p. 6628. [Google Scholar] [CrossRef]
- Scales, C.D., Jr.; Tasian, G.E.; Schwaderer, A.L.; Goldfarb, D.S.; Star, R.A.; Kirkali, Z. Urinary stone disease: Advancing knowledge, patient care, and population health. Clin. J. Am. Soc. Nephrol. 2016, 11, 1305–1312. [Google Scholar] [CrossRef]
- Xu, H.; Zisman, A.L.; Coe, F.L.; Worcester, E.M. Kidney stones: An update on current pharmacological management and future directions. Expert. Opin. Pharmacother. 2013, 14, 435–447. [Google Scholar] [CrossRef]
- Taylor, E.N.; Stampfer, M.J.; Curhan, G.C. Obesity, weight gain, and the risk of kidney stones. JAMA 2005, 293, 455–462. [Google Scholar] [CrossRef] [PubMed]
- Lieske, J.C.; De La Vega, L.S.P.; Gettman, M.T.; Slezak, J.M.; Bergstralh, E.J.; Melton, L.J.; Leibson, C.L. Diabetes mellitus and the risk of urinary tract stones: A population-based case-control study. Am. J. Kidney Dis. 2006, 48, 897–904. [Google Scholar] [CrossRef] [PubMed]
- Taylor, E.N.; Stampfer, M.J.; Curhan, G.C. Diabetes mellitus and the risk of nephrolithiasis. Kidney Int. 2005, 68, 1230–1235. [Google Scholar] [CrossRef]
- Alexander, R.T.; Hemmelgarn, B.R.; Wiebe, N.; Bello, A.; Samuel, S.; Klarenbach, S.W.; Curhan, G.C.; Tonelli, M. Kidney stones and cardiovascular events: A cohort study. CJASN 2014, 9, 506–512. [Google Scholar] [CrossRef]
- Domingos, F.; Serra, A. Nephrolithiasis is associated with an increased prevalence of cardiovascular disease. Nephrol. Dial. Transpl. 2010, 26, 864–868. [Google Scholar] [CrossRef]
- Alelign, T.; Petros, B. Kidney stone disease: An update on current concepts. Adv. Urol. 2018, 2018, 3068365. [Google Scholar] [CrossRef] [PubMed]
- Ratkalkar, V.N.; Kleinman, J.G. Mechanisms of Stone Formation. Clin. Rev. Bone Min. Metab. 2011, 3–4, 187–197. [Google Scholar] [CrossRef] [PubMed]
- Hess, B.; Hasler-Strub, U.; Ackermann, D.; Jaeger, P. Metabolic evaluation of patients with recurrent idiopathic calcium nephrolithiasis. Nephrol. Dial. Transpl. 1997, 12, 1362–1368. [Google Scholar] [CrossRef] [PubMed]
- Cloutier, J.; Villa, L.; Traxer, O.; Daudon, M. Kidney stone analysis: “Give me your stone, I will tell you who you are!”. World J. Urol. 2015, 33, 157–169. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, T.M. Chemical pathology clinical investigation and management of nephrolithiasis. J. Clin. Pathol. 2005, 58, 134–140. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.R.; Pearle, M.S.; Robertson, W.G.; Gambaro, G.; Canales, B.K.; Doizi, S.; Traxer, O.; Tiselius, H.G. Kidney stones. Nat. Rev. Dis. Primers 2016, 2, 16008. [Google Scholar] [CrossRef]
- Moe, O.W. Kidney stones: Pathophysiology and medical management. Lancet 2006, 367, 333–344. [Google Scholar] [CrossRef]
- Singh, P.; Enders, F.T.; Vaughan, L.E.; Bergstralh, E.J.; Knoedler, J.J.; Krambeck, A.E.; Lieske, J.C.; Rule, A.D. Stone composition among first-time symptomatic kidney stone formers in the community. Mayo Clin. Proc. 2015, 90, 1356–1365. [Google Scholar] [CrossRef] [PubMed]
- Lieske, J.C.; Rule, A.D.; Krambeck, A.E.; Williams, J.C.; Bergstralh, E.J.; Mehta, R.A.; Moyer, T.P. Stone composition as a function of age and sex. Clin. J. Am. Soc. Nephrol. 2014, 9, 2141–2146. [Google Scholar] [CrossRef] [PubMed]
- Ramona, P.; Bellanato, J.; Escolar, E. Infrared and Raman Spectroscopy of Urinary Calculi: A Rewiew. Biospectroscopy 1997, 3, 331–346. [Google Scholar] [CrossRef]
- Cui, X.; Zhao, Z.; Zhang, G.; Chen, S.; Zhao, Y.; Lu, J. Analysis and classification of kidney stones based on Raman spectroscopy. Biomed. Opt. Express 2018, 9, 4175–4183. [Google Scholar] [CrossRef]
- González-Enguita, C.; García-Giménez, R. Kidney Stones: Crystal Characterization. Crystals 2024, 14, 238. [Google Scholar] [CrossRef]
- Williams, J.C.; Lingeman, J.E.; Daudon, M.; Bazin, D. Using micro computed tomographic imaging for analyzing kidney stones. Comptes Rendus. Chim. 2022, 25, 61–72. [Google Scholar] [CrossRef] [PubMed]
- Robinson, J.W.; Roberts, W.W.; Matzger, A.J. Kidney stone growth through the lens of Raman mapping. Sci. Rep. 2024, 14, 10834. [Google Scholar] [CrossRef]
- Tsujihata, M. Mechanism of calcium oxalate renal stone formation and renal tubular cell injury. Int. J. Urol. 2008, 15, 115–120. [Google Scholar] [CrossRef] [PubMed]
- Gadd, G.M. Fungal Production of Citric and Oxalic Acid: Importance in Metal Speciation, Physiology and Biogeochemical Processes. Adv. Microb. Physiol. 2008, 41, 47–92. [Google Scholar] [CrossRef]
- Izatulina, A.R.; Punin, Y.O.; Shtukenberg, A.G.; Frank-Kamenetskaya, O.V.; Gurzhiy, V.V. Formation and Stability of Calcium Oxalates, the Main Crystalline Phases of Kidney Stones. Minerals as Advanced Materials II; Springer: Berlin/Heidelberg, Germany, 2011; pp. 415–424. [Google Scholar] [CrossRef]
- Pragnya, B.A.; Parimal, P. Analysis of urinary stone constituents using powder X-ray diffraction and FT–IR. J. Chem. Sci. 2008, 120, 267–273. [Google Scholar] [CrossRef]
- Kaloustian, J.; El-Moselhy, F.; Portugal, H. Determination of calcium oxalate (mono- and dihydrate) in mixtures with magnesium ammonium phosphate or uric acid: The use of simultaneous thermal analysis in urinary calculi. Clin. Chim. Acta 2003, 334, 117–129. [Google Scholar] [CrossRef] [PubMed]
- Daudon, M.; Bader, C.A.; Jungers, P. Urinary calculi: Review of classification methods and correlations with etiology. Scanning Microsc. 1993, 7, 1081–1106. [Google Scholar]
- Manzoor, M.P.; Mujeeburahiman, M.; Rekha, P.D. Electron probe micro-analysis reveals the complexity of mineral deposition mechanisms in urinary stones. Urolithiasis 2019, 47, 137–148. [Google Scholar] [CrossRef]
- Singh, V.K.; Rai, P.K. Kidney stone analysis techniques and the role of major and trace elements on their pathogenesis: A review. Biophys. Rev. 2014, 6, 291–310. [Google Scholar] [CrossRef]
- Maruyama, M.; Sawada, K.P.; Tanaka, Y.; Okada, A.; Momma, K.; Nakamura, M.; Mori, R.; Furukawa, Y.; Sugiura, Y.; Tajiri, R.; et al. Quantitative analysis of calcium oxalate monohydrate and dihydrate for elucidating the formation mechanism of calcium oxalate kidney stones. PLoS ONE 2023, 18, e0282743. [Google Scholar] [CrossRef]
- Veselinović, L.; Karanović, L.; Stojanović, Z.; Bračko, I.; Marković, S.; Ignjatović, N.; Uskoković, D. Crystal structure of cobalt-substituted calcium hydroxyapatite nanopowders prepared by hydrothermal processing. J. Appl. Crystallogr. 2010, 43, 320–327. [Google Scholar] [CrossRef]
- Svoboda, R.; Zmrhalová, Z.O.; Galusek, D.; Brandová, D.; Chovanec, J. Thermal decomposition of mixed calcium oxalate hydrates—Kinetic deconvolution of complex heterogeneous processes. Phys. Chem. Chem. Phys. 2020, 22, 8889. [Google Scholar] [CrossRef] [PubMed]
- Sekkoum, K.; Cheriti, A.; Taleb, S.; Belboukhari, N. FTIR spectroscopic study of human urinary stones from El Bayadh district (Algeria). Arab. J. Chem. 2011, 9, 3303334. [Google Scholar] [CrossRef]
- Conti, C.; Brambilla, L.; Colombo, C.; Dellasega, D.; Gatta, G.D.; Realini, M.; Zerbi, G. Stability and transformation mechanism of weddellite nanocrystals studied by X-ray diffraction and infrared spectroscopy. Phys. Chem. Chem. Phys. 2010, 12, 14560–14566. [Google Scholar] [CrossRef]
- Fleet, M.E. Infrared spectra of carbonate apatites: n2-Region bands. Biomaterials 2009, 30, 1473–1481. [Google Scholar] [CrossRef] [PubMed]
- Ferraris, G.; Fuess, H.; Joswig, W. Neutron diffraction study of MgNH4PO4*6H2O (struvite) and survey of water molecules donating short hydrogen bonds. Acta Crystallogr. Sect. B 1986, 42, 253–258. [Google Scholar] [CrossRef]
- Sainz-Diaz, C.I.; Villacampa, A.; Otalora, F. Crystallographic properties of the calcium phosphate mineral, brushite, by means of first principles calculations. Am. Mineral. 2004, 89, 307–313. [Google Scholar] [CrossRef]
- Gavin, C.T.; Ali, S.N.; Tailly, T.; Olvera-Posada, D.; Alenezi, H.; Power, N.E.; Hou, J.; St Amant, A.H.; Luyt, L.G.; Wood, S.; et al. Novel Methods of Determining Urinary Calculi Composition: Petrographic Thin Sectioning of Calculi and Nanoscale Flow Cytometry Urinalysis. Sci. Rep. 2016, 6, 19328. [Google Scholar] [CrossRef] [PubMed]
- Sakhaee, K.; Adams-Huet, B.; Moe, O.W.; Pak, C.Y.C. Pathophysiologic basis for normouricosuric uric acid nephrolithiasis. Kidney Int. 2002, 62, 971–979. [Google Scholar] [CrossRef]
- Pak, C.Y.; Sakhaee, K.; Moe, O.; Preminger, G.M.; Poindexter, J.R.; Peterson, R.D.; Pietrow, P.; Ekeruo, W. Biochemical profile of stone-forming patients with diabetes mellitus. Urology 2003, 61, 523–527. [Google Scholar] [CrossRef]
- Coe, F.L.; Parks, J.H.; Asplin, J.R. The pathogenesis and treatment of kidney stones. N. Engl. J. Med. 1992, 327, 1141–1152. [Google Scholar] [CrossRef]
- Chandrajith, R.; Weerasingha, A.; Premaratne, K.M.; Gamage, D.; Abeygunasekera, A.M.; Joachimski, M.M.; Senaratne, A. Mineralogical, compositional and isotope characterization of human kidney stones (urolithiasis) in a Sri Lankan population. Environ. Geochem. Health 2019, 41, 1881–1894. [Google Scholar] [CrossRef]
- Parkin, S.; Hope, H. Uric Acid Dihydrate Revisited. Acta Crystallogr. Sect. B 1998, 54, 339–344. [Google Scholar] [CrossRef]
- Moggach, S.A.; Allan, D.R.; Parsons, S.; Sawyer, L.; Warren, J.E. The effect of pressure on the crystal structure of hexagonal L-cystine. J. Synchrotron Radiat. 2005, 12, 598–607. [Google Scholar] [CrossRef] [PubMed]
Kidney Stone Group | Samples | Kidney Stone Type (Mineral Name) |
---|---|---|
Calcium kidney stones | M1, M3, M5, M6, F6 | Mostly calcium oxalate (whewellite (w), weddellite (wd)) |
F4, F5, F8 | Mixed calcium oxalate (whewellite (w), weddellite (wd), + calcium phosphate hydroxyapatite (a)) | |
F1, F2, F3, M2, M4, M7 | Mostly calcium phosphate (hydroxyapatite (a) and struvite (s)) + some weddellite (wd) and a very small amount of whewellite (w)) | |
Non-calcium kidney stones | F7 | Mixed calcium oxalate (w) + uric acid (u) |
M8 | Mixed cystine (c) + phosphate struvite (s) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brdarić Kosanović, J.; Živković, K.; Šerić, V.; Marković, B.; Szenti, I.; Kukovecz, Á.; Matijaković Mlinarić, N.; Stanković, A. Analysis of Human Kidney Stones Using Advanced Characterization Techniques. Crystals 2025, 15, 6. https://doi.org/10.3390/cryst15010006
Brdarić Kosanović J, Živković K, Šerić V, Marković B, Szenti I, Kukovecz Á, Matijaković Mlinarić N, Stanković A. Analysis of Human Kidney Stones Using Advanced Characterization Techniques. Crystals. 2025; 15(1):6. https://doi.org/10.3390/cryst15010006
Chicago/Turabian StyleBrdarić Kosanović, Jelena, Kristijan Živković, Vatroslav Šerić, Berislav Marković, Imre Szenti, Ákos Kukovecz, Nives Matijaković Mlinarić, and Anamarija Stanković. 2025. "Analysis of Human Kidney Stones Using Advanced Characterization Techniques" Crystals 15, no. 1: 6. https://doi.org/10.3390/cryst15010006
APA StyleBrdarić Kosanović, J., Živković, K., Šerić, V., Marković, B., Szenti, I., Kukovecz, Á., Matijaković Mlinarić, N., & Stanković, A. (2025). Analysis of Human Kidney Stones Using Advanced Characterization Techniques. Crystals, 15(1), 6. https://doi.org/10.3390/cryst15010006