Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (25,783)

Search Parameters:
Keywords = chemical analysis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2893 KB  
Article
The Classification of Synthetic- and Petroleum-Based Hydrocarbon Fluids Using Handheld Raman Spectroscopy
by Javier E. Hodges, Kailee Marchand, Geraldine Monjardez and Jorn Chi-Chung Yu
Chemosensors 2025, 13(9), 327; https://doi.org/10.3390/chemosensors13090327 (registering DOI) - 2 Sep 2025
Abstract
Hydrocarbon fluids have a widespread presence in modern society due to their role in the global energy and fuel supply. The ability to distinguish between hydrocarbon fluids from different manufacturing processes is essential in industrial and government settings. Currently, performing such analyses is [...] Read more.
Hydrocarbon fluids have a widespread presence in modern society due to their role in the global energy and fuel supply. The ability to distinguish between hydrocarbon fluids from different manufacturing processes is essential in industrial and government settings. Currently, performing such analyses is expensive and time-consuming, as standard practice involves sending samples to a laboratory for gas chromatography-mass spectrometry (GC-MS) analysis. The inherent limitations of traditional separation techniques often make them unsuitable for the demands of real-time process monitoring and control. This work proposes the use of handheld Raman spectroscopy for rapid classification of petroleum- and synthetic-based hydrocarbon fluids. A total of 600 Raman spectra were collected from six different hydraulic fluids and analyzed. Preliminary visual observations revealed reproducible spectral differences between various types of hydraulic fluids. Principal component analysis (PCA) and linear discriminant analysis (LDA) were used to investigate the data further. The findings indicate that handheld Raman spectrometers are capable of detecting chemical features of hydrocarbon fluids, supporting the classification of their formulations. Full article
(This article belongs to the Special Issue Chemical Sensing and Analytical Methods for Forensic Applications)
Show Figures

Figure 1

31 pages, 1511 KB  
Article
Economic Evaluation During Physicochemical Characterization Process: A Cost–Benefit Analysis
by Despina A. Gkika, Nick Vordos, Athanasios C. Mitropoulos and George Z. Kyzas
ChemEngineering 2025, 9(5), 95; https://doi.org/10.3390/chemengineering9050095 (registering DOI) - 2 Sep 2025
Abstract
As academic institutions expand, the proliferation of laboratories dealing with hazardous chemicals has risen. While the physicochemical characterization equipment employed in these academic chemical laboratories is widely recognized, its usage presents a notable risk to researchers at various levels. This paper presents a [...] Read more.
As academic institutions expand, the proliferation of laboratories dealing with hazardous chemicals has risen. While the physicochemical characterization equipment employed in these academic chemical laboratories is widely recognized, its usage presents a notable risk to researchers at various levels. This paper presents a simplified approach for evaluating the effects of the implementation of prevention investments in regard to working with nanomaterials on a lab scale. The evaluation is based on modeling the benefits (avoided accident costs) and costs (safety training), as opposed to an alternative (not investing in safety training). Each scenario analyzed in the economic evaluation reflects a different level of risk. The novelty of this study lies in its objective to provide an economic assessment of the benefits and returns from safety investments—specifically training—in a chemical laboratory, using a framework that integrates qualitative insights to explore and define the context alongside quantitative data derived from a cost–benefit analysis. The Net Present Value (NPV) was evaluated. The results of the cost–benefit analysis demonstrated that the benefits exceed the cost of the investment. The findings from the sensitivity analysis highlight the significant influence of insurance benefits on safety investments in the specific case study. In this case study, the deterministic analysis yielded a Net Present Value (NPV) of €280,414.67, which aligns closely with the probabilistic results. The probabilistic NPV indicates 90% confidence that the investment will yield a positive NPV ranging from €283,053 to €337,356. The cost–benefit analysis results demonstrate that the benefits outweigh the costs, showing that with an 87% training success rate, this investment would generate benefits of approximately €6328 by preventing accidents in this study. To the best of the researchers’ knowledge, this is the first study to evaluate the influence of safety investment through an economic evaluation of laboratory accidents with small-angle X-ray scattering during the physicochemical characterization process of engineered nanomaterials. The proposed approach and framework are relevant not only to academic settings but also to industry. Full article
(This article belongs to the Special Issue New Advances in Chemical Engineering)
Show Figures

Figure 1

21 pages, 1825 KB  
Article
Seasonal Variation in Essential Oil Composition and Bioactivity of Three Ocimum Species from Nepal
by Prem Narayan Paudel, Prabodh Satyal, William N. Setzer, Suresh Awale, Shiro Watanabe, Juthamart Maneenet, Rakesh Satyal, Ajaya Acharya, Anjila Shrestha and Rajendra Gyawali
Molecules 2025, 30(17), 3581; https://doi.org/10.3390/molecules30173581 (registering DOI) - 1 Sep 2025
Abstract
The plants from the Ocimum genus, belonging to the Labiatae family, serve as important bioresources of essential oils (EOs) rich in biologically active secondary metabolites, widely used in medicine, food, and cosmetics. This study explored the volatile composition, enantiomeric distribution, and in vitro [...] Read more.
The plants from the Ocimum genus, belonging to the Labiatae family, serve as important bioresources of essential oils (EOs) rich in biologically active secondary metabolites, widely used in medicine, food, and cosmetics. This study explored the volatile composition, enantiomeric distribution, and in vitro biological activities of EOs from three Ocimum species native to Nepal: O. tenuiflorum L., O. basilicum L., and O. americanum L. EOs were extracted via hydro-distillation and analyzed using gas chromatography–mass spectrometry (GC-MS) for chemical profiling and chiral GC-MS for enantiomeric composition. Hierarchical cluster analysis was performed for major chemotypes. Antioxidant activity was assessed using DPPH and ABTS assays. Antimicrobial efficacy was evaluated using the microbroth dilution method, and cytotoxicity was tested on NIH-3T3 (normal) and MCF-7 (breast cancer) cell lines via the Cell Counting Kit-8 assay. EO yield was highest in O. tenuiflorum (1.67 ± 0.13%) during autumn and lowest in O. americanum (0.35 ± 0.02%) during winter among all Ocimum spp. The major compounds identified in O. tenuiflorum were eugenol (32.15–34.95%), trans-β-elemene (29.08–32.85%), and β–caryophyllene (19.85–21.64%). In O. americanum, the major constituents included camphor (51.33–65.88%), linalool (9.72–9.91%), germacrene D (7.75–1.83%), and β–caryophyllene (6.35–3.97%). For O. basicilum, EO was mainly composed of methyl chavicol (62.16–64.42%) and linalool (26.92–27.05%). The oxygenated monoterpenes were a dominant class of terpenes in the EOs except for O. tenuiflorum (sesquiterpene hydrocarbon). A hierarchical cluster analysis based on the compositions of EOs revealed at least three different chemotypes in Ocimum species. Chiral GC-MS analysis revealed β-caryophyllene and germacrene D as enantiomerically pure, with linalool consistently dominant in its levorotatory form. O. tenuiflorum exhibited the strongest antimicrobial activity, particularly against Candida albicans, and showed notable anticancer activity against MCF-7 cells (IC50 = 23.43 µg/mL), with lower toxicity to normal cells. It also demonstrated the highest antioxidant activity (DPPH IC50 = 69.23 ± 0.10 µg/mL; ABTS IC50 = 9.05 ± 0.24 µg/mL). The EOs from Ocimum species possess significant antioxidant, antimicrobial, and cytotoxic properties, especially O. tenuiflorum. These findings support their potential application as natural agents in medicine, food, and cosmetics, warranting further validation. Full article
Show Figures

Figure 1

16 pages, 2076 KB  
Article
Interspecific and Environmental Influence on the Foliar Metabolomes of Mitragyna Species Through Recursive OPLSDA Modeling
by Tushar Andriyas, Nisa Leksungnoen, Suwimon Uthairatsamee, Chatchai Ngernsaengsaruay and Sanyogita Andriyas
Plants 2025, 14(17), 2721; https://doi.org/10.3390/plants14172721 - 1 Sep 2025
Abstract
Understanding interspecific and environmental influences on secondary metabolite profiles can be critical in plant metabolomics. This study used a hierarchical orthogonal projections to latent structure discriminant analysis (OPLS-DA) to classify the foliar metabolomes of four naturally growing Mitragyna species in Thailand, M. speciosa [...] Read more.
Understanding interspecific and environmental influences on secondary metabolite profiles can be critical in plant metabolomics. This study used a hierarchical orthogonal projections to latent structure discriminant analysis (OPLS-DA) to classify the foliar metabolomes of four naturally growing Mitragyna species in Thailand, M. speciosa, M. diversifolia, M. hirsuta, and M. rotundifolia. Using a recursive binary classification, interspecific and environmental influences were determined in multiple class separations, while identifying key metabolites driving these distinctions. Gas chromatography–mass spectrometry (GC-MS) annotated 409 metabolites, and through a progressive class differentiation using hierarchical OPLS-DA, M. speciosa exhibited a metabolome distinct from the other three species. However, the metabolomes of M. hirsuta and M. rotundifolia had a lot of overlap, while M. diversifolia displayed regional metabolic variation, emphasizing the role of environmental factors in shaping its chemical composition. Key metabolites, such as mitragynine, isorhynchophylline, squalene, and vanillic acid, among others, were identified as major discriminators across the hierarchical splits. Unlike conventional OPLS-DA, which struggles with multiclass datasets, the recursive approach identified class structures that were biologically relevant, without the need for manual pairwise modeling. The results aligned with prior morphological and genetic studies, validating the method’s robustness in capturing interspecific and environmental differences, which can be used in high-dimensional multiclass plant metabolomics. Full article
Show Figures

Figure 1

23 pages, 3485 KB  
Article
Analysis of the Effect of the Tablet Matrix on the Polymorphism of Ibuprofen, Naproxen, and Naproxen Sodium in Commercially Available Pharmaceutical Formulations
by Edyta Leyk, Marcin Środa, Gracjan Maślanka, Patrycja Nowaczyk, Amelia Orzołek, Hanna Grodzka, Aleksandra Kurek, Olaf Knut, Julia Michalak, Jonatan Płachciak and Alina Plenis
Methods Protoc. 2025, 8(5), 99; https://doi.org/10.3390/mps8050099 (registering DOI) - 1 Sep 2025
Abstract
Pharmaceutical formulations, in addition to the medicinal substance(s), contain added excipients that make it possible to create a pharmaceutical product that exhibits required properties in terms of mechanical, physical, chemical, and microbiological stability. Additionally, these substances can act as release modifiers or improve [...] Read more.
Pharmaceutical formulations, in addition to the medicinal substance(s), contain added excipients that make it possible to create a pharmaceutical product that exhibits required properties in terms of mechanical, physical, chemical, and microbiological stability. Additionally, these substances can act as release modifiers or improve bioavailability parameters. Literature data indicate that excipients, especially polymeric ones, can also affect the polymorphism of the active substance, resulting in drug bioavailability enhancement or reduction. This influence can be evaluated using thermal and spectroscopic methods. In the study, differential scanning calorimetry (DSC), vibrational spectroscopic studies (Fourier transform infrared spectroscopy, FTIR), Raman spectroscopy, and X-ray diffraction (XRD) assay of ibuprofen, naproxen, and naproxen sodium standards and pharmaceutical preparations containing these medicinal substances in their compositions were carried out. DSC results indicated that a sharp melting peak was observed on the DSC curves of the standards, confirming their crystalline form. DSC results obtained for pharmaceutical formulations also indicated that the enthalpy of melting is sometimes lower than calculated from the percentage of active ingredients in the formulations. In addition, the melting peak is often broadened and shifted toward lower temperatures, suggesting the influence of excipients on the polymorphism of drug substances. The FTIR and Raman spectra of pharmaceutical formulations contained all characteristics of the active substances. XRD analysis was also performed. Therefore, possible chemical interactions between the components of the preparations have been excluded. At the same time, FTIR and Raman spectroscopy results as well as XRD assay showed a reduction in the height of signals corresponding to the crystalline API form, confirming the possibility of reducing API crystallinity in pharmaceutical formulations. Full article
(This article belongs to the Special Issue Analytical Methods in Natural Sciences and Archaeometry)
27 pages, 1784 KB  
Review
Review on Tribological and Corrosion Properties of Amorphous Silicon-Based Coatings Fabricated by Chemical Vapor Deposition
by Xin Wang, Bo Zhang, Bingjie Xiao, Rongyu Sun, Wenqi Zhao, Li Cui and Peter K. Liaw
Coatings 2025, 15(9), 1016; https://doi.org/10.3390/coatings15091016 - 1 Sep 2025
Abstract
Chemical vapor deposition (CVD) is a crucial technique for fabricating high-performance amorphous silicon coatings, leveraging its process flexibility and microstructural controllability. Optimizing processes like hot-wire chemical vapor deposition, plasma-enhanced chemical vapor deposition, and catalytic chemical vapor deposition enable precise regulation of coating density, [...] Read more.
Chemical vapor deposition (CVD) is a crucial technique for fabricating high-performance amorphous silicon coatings, leveraging its process flexibility and microstructural controllability. Optimizing processes like hot-wire chemical vapor deposition, plasma-enhanced chemical vapor deposition, and catalytic chemical vapor deposition enable precise regulation of coating density, surface roughness, and chemical bonding. These amorphous silicon coatings exhibit outstanding tribological properties and exceptional corrosion resistance, primarily attributed to their unique amorphous structure eliminating grain boundary defects and forming dense passivation films. Future research should focus on intelligent process development, multi-field coupling failure analysis, environmental friendliness enhancement, and lifespan prediction models to advance this technology. Full article
(This article belongs to the Section Corrosion, Wear and Erosion)
Show Figures

Figure 1

19 pages, 3335 KB  
Article
CH3COOAg with Laccase-like Activity for Differentiation and Detection of Aminoglycoside Antibiotics
by Huan Zhu, Tong-Qing Chai, Jia-Xin Li, Jing-Jing Dai, Lei Xu, Wen-Ling Qin and Feng-Qing Yang
Biosensors 2025, 15(9), 570; https://doi.org/10.3390/bios15090570 (registering DOI) - 1 Sep 2025
Abstract
Aminoglycoside antibiotics (AGs) are widely used in medicine and animal husbandry, but they pose significant risks due to residual toxicity and antibiotic resistance. In this study, a novel chemical sensor based on the laccase-like activity of CH3COOAg was developed for the [...] Read more.
Aminoglycoside antibiotics (AGs) are widely used in medicine and animal husbandry, but they pose significant risks due to residual toxicity and antibiotic resistance. In this study, a novel chemical sensor based on the laccase-like activity of CH3COOAg was developed for the selective detection of AGs. CH3COOAg exhibited varying degrees of laccase-like activity in different buffers (MES, HEPES, and NaAc) and H2O, and five AGs showed distinct intensities of the inhibitory effect on the laccase-like activity of CH3COOA in different buffers and H2O. Therefore, a four-channel colorimetric sensor array was constructed in combination with the use of principal component analysis (PCA) and Hierarchical Cluster Analysis (HCA) for the efficient identification of five AGs (0.02–0.3 μM) in environment samples like tap and lake water. In addition, a colorimetric method was developed for kanamycin (KAN) detection in a honey sample with a linear range of 10–100 nM (R2 = 0.9977). The method has excellent sensitivity with a limit of detection of 3.99 nM for KAN. This work not only provides a rapid and low-cost detection method for AG monitoring but also provides a reference for the design of non-copper laccase mimics. Full article
(This article belongs to the Special Issue Biosensors for Environmental Monitoring and Food Safety)
Show Figures

Figure 1

16 pages, 4623 KB  
Article
Comparative In Vitro Analysis of Root Cementum Surface Alterations Following Various Mechanical and Chemical Treatment Protocols in Gingival Surgery
by Zurab Khabadze, Oleg Mordanov and Omargadzhi Magomedov
J. Clin. Med. 2025, 14(17), 6174; https://doi.org/10.3390/jcm14176174 (registering DOI) - 1 Sep 2025
Abstract
Background/Objectives: Gingival recession poses significant challenges in periodontal therapy, particularly in procedures aimed at achieving predictable root coverage and long-term stability of grafts. Conditioning of the root surface plays a crucial role in improving biomaterial adhesion and facilitating periodontal regeneration. This in vitro [...] Read more.
Background/Objectives: Gingival recession poses significant challenges in periodontal therapy, particularly in procedures aimed at achieving predictable root coverage and long-term stability of grafts. Conditioning of the root surface plays a crucial role in improving biomaterial adhesion and facilitating periodontal regeneration. This in vitro study aimed to evaluate the morphological and microroughness alterations of root cementum following different mechanical and chemical conditioning protocols commonly used in mucogingival surgery. Methods: Forty extracted human single-rooted teeth were randomly allocated into eight groups: untreated control, mechanical scaling alone, and scaling combined with ethylenediaminetetraacetic acid (EDTA), citric acid, phosphoric acid, tetracycline, doxycycline, or saline. Surface roughness was measured using contact profilometry, while structural modifications were analyzed via scanning electron microscopy. Results: Statistically significant intergroup differences (p < 0.05) were observed. Baneocin treatment produced the most conservative changes, with limited surface roughness and minimal structural alteration, whereas phosphoric acid, tetracycline, and EDTA caused pronounced demineralization and surface porosity. Citric acid and doxycycline induced moderate alterations, with partial preservation of cementum integrity. The null hypothesis assuming no surface or morphological changes was rejected. Conclusions: These findings indicate that low-aggressiveness agents may achieve an optimal balance between surface decontamination and cementum preservation, which is critical for enhancing graft integration and improving clinical outcomes in root coverage surgery. Full article
(This article belongs to the Section Dentistry, Oral Surgery and Oral Medicine)
Show Figures

Figure 1

23 pages, 3584 KB  
Article
Multi-Functional Hybrid Terpolymer Thermosets Based on Thiols Bio-Based Epoxy and Benzoxazine Monomers
by Madalina Ioana Necolau, Elena Iuliana Biru, Elena Olaret and Horia Iovu
Polymers 2025, 17(17), 2389; https://doi.org/10.3390/polym17172389 - 1 Sep 2025
Abstract
Hybrid thermosetting terpolymers based on epoxidized linseed oil (ELO), eugenol-based benzoxazine monomer (EPB), and thiols (2SH and 3SH) were synthesized and studied by focusing on the effects of the thiol-bearing functionality over the final performances. The curing dynamics were monitored by differential scanning [...] Read more.
Hybrid thermosetting terpolymers based on epoxidized linseed oil (ELO), eugenol-based benzoxazine monomer (EPB), and thiols (2SH and 3SH) were synthesized and studied by focusing on the effects of the thiol-bearing functionality over the final performances. The curing dynamics were monitored by differential scanning calorimetry (DSC) and Fourier transform infrared spectrometry (FTIR). FTIR results showed that the curing process takes place in multiple steps and depends on the concentration of thiol used as a crosslinker. At the same time, the complexity of the reactions that take place within each system was highlighted by the curing profiles from DSC. Dynamic mechanical analysis (DMA) and nanoindentation data revealed that the mechanical features of the terpolymers can be modulated to achieve high stiffness, as in the case where 2SH and 3SH thiols were used in 0.25 wt.% or increased flexibility where 1% thiol concentrations were employed. Higher crosslinking density for hybrid terpolymers in comparison with the epoxy/benzoxazine sample indicated a good compatibility between the monomers and the crosslinking agents and the formation of additional chemical bonds within the networks. The ternary samples demonstrated good thermal stability (up to 300 °C) and high residual mass (>25%), which make them suitable candidates as flame-resistant coatings. Full article
(This article belongs to the Collection Design and Synthesis of Polymers)
Show Figures

Figure 1

15 pages, 2856 KB  
Article
Microwave Treatment for Citrus Huanglongbing Control: Pathogen Elimination and Metabolomic Analysis
by Xianrui Chen, Yunyun Li, Gen Li, Yanling Wu, Junru Mao, Jiasheng Lin, Mengxue Diao and Zhimin Huang
Plants 2025, 14(17), 2712; https://doi.org/10.3390/plants14172712 - 1 Sep 2025
Abstract
Huanglongbing (HLB), associated with Candidatus Liberibacter asiaticus (CLas), has severely impacted global citrus production, with no economically viable control measures currently available. This study explored microwave treatment at 2450 MHz as an innovative physical method for HLB control, combining pathogen elimination [...] Read more.
Huanglongbing (HLB), associated with Candidatus Liberibacter asiaticus (CLas), has severely impacted global citrus production, with no economically viable control measures currently available. This study explored microwave treatment at 2450 MHz as an innovative physical method for HLB control, combining pathogen elimination efficacy with metabolomic analysis. In controlled experiments, 36 HLB-infected citrus plants were treated with 500 W or 250 W microwave irradiation and underwent 10 cycles, achieving up to 99.83% reduction CLas titer. Non-targeted metabolomic analysis identified 15 significantly altered metabolites, including upregulated beta-caryophyllene and lysophosphatidylinositols, and downregulated 5′-S-methyl-5′-thioadenosine. The results indicate that microwave treatment effectively suppressed CLas while simultaneously triggering citrus physiological metabolic changes. These findings suggest that microwave treatment could serve as a sustainable alternative to chemical controls. However, further optimization of parameters, such as wavelengths, voltages, currents, and safety protocols, will be essential for practical field implementation. Full article
(This article belongs to the Collection Feature Papers in Plant Protection)
Show Figures

Figure 1

26 pages, 11096 KB  
Article
A Novel ML-Powered Nanomembrane Sensor for Smart Monitoring of Pollutants in Industrial Wastewater
by Gabriele Cavaliere, Luca Tari, Francesco Siconolfi, Hamza Rehman, Polina Kuzhir, Antonio Maffucci and Luigi Ferrigno
Sensors 2025, 25(17), 5390; https://doi.org/10.3390/s25175390 (registering DOI) - 1 Sep 2025
Abstract
This study presents a comprehensive analysis aimed at validating the use of an innovative nanosensor based on graphitic nanomembranes for the smart monitoring of industrial wastewater. The validation of the potential of the nanosensor was carried out through the development of advanced analytical [...] Read more.
This study presents a comprehensive analysis aimed at validating the use of an innovative nanosensor based on graphitic nanomembranes for the smart monitoring of industrial wastewater. The validation of the potential of the nanosensor was carried out through the development of advanced analytical methodologies, a direct experimental comparison with commercially available electrode sensors commonly used for the detection of chemical species, and the evaluation of performance under conditions very similar to real-world field applications. The investigation involved a series of controlled experiments using an organic pollutant—benzoquinone—at varying concentrations. Initially, data analysis was performed using classical linear regression models, representing a conventional approach in chemical analysis. Subsequently, a more advanced methodology was implemented, incorporating machine-learning techniques to train a classifier capable of detecting the presence of pollutants in water samples. The study builds upon an experimental protocol previously developed by the authors for the nanomembranes, based on electrochemical impedance spectroscopy. The results clearly demonstrate that integrating the nanosensor with machine-learning algorithms yields significant performance. The intrinsic properties of the nanosensor make it well-suited for potential integration into field-deployable platforms, offering a real-time, cost-effective, and high-performance solution for the detection and quantification of contaminants in wastewater. These features position the nanomembrane-based sensor as a promising alternative to overcome current technological limitations in this domain. Full article
(This article belongs to the Special Issue Sensors for Water Quality Monitoring and Assessment)
Show Figures

Figure 1

14 pages, 1756 KB  
Article
In-Depth Investigation of the Chemical Profile of Pelargonium odoratissimum (L.) L’Hér. Hydrolate by SPME-GC/MS, GC/MS, LVI-GC/MS and PTR-Tof-MS Techniques
by Cosimo Taiti, Vittorio Vinciguerra, Monica Mollica Graziano, Elisa Masi and Stefania Garzoli
Chemosensors 2025, 13(9), 325; https://doi.org/10.3390/chemosensors13090325 - 1 Sep 2025
Abstract
Hydrolates are aromatic aqueous solutions saturated with volatile water-soluble compounds of essential oil. Despite their potential, hydrolates remain less explored than essential oils. In this work, the hydrolate of Pelargonium odoratissimum (L.) L’Hér. has been analyzed by multiple analytical techniques in order to [...] Read more.
Hydrolates are aromatic aqueous solutions saturated with volatile water-soluble compounds of essential oil. Despite their potential, hydrolates remain less explored than essential oils. In this work, the hydrolate of Pelargonium odoratissimum (L.) L’Hér. has been analyzed by multiple analytical techniques in order to describe its chemical composition. Headspace (HS-) and Direct Immersion-Solid Phase Microextraction-Gas Chromatography/Mass spectrometry (DI-SPME-GC/MS) and Proton Transfer Reaction Time-of-Flight Mass Spectrometry (PTR-ToF-MS) were employed to reveal the VOC emission from the hydrolate. Further, a direct injection of the pure hydrolate and of the hydrolate after extraction with hexane was performed by Large-Volume Injection Gas Chromatography/Mass Spectrometry (LVI-GC/MS) and GC/MS. The results obtained by HS- and DI-SPME-GC/MS highlighted a nearly overlapping chemical profile with linalool, isomenthone, and α-terpineol as the main volatiles. On the other hand, analysis of the hydrolate by GC/MS after solvent extraction revealed a lower overall number of compounds but allowed the detection of thujone and cis-linalool oxide. In comparison, LVI-GC/MS was the technique that allowed the identification of a higher number of volatiles with citronellol, linalool, and α-terpineol as the principal compounds. Finally, PTR-ToF-MS was a fundamental approach to quantify and evaluate total terpene emissions from this complex matrix starting from low-molecular-weight compounds such as acetylene, methanol, acetaldehyde, acetone, and ethanol, which were the most abundant. Among the detected compounds, dimethyl sulfide and small amounts of dimethyl-furan and 2-butylfuran were also identified. Overall, the findings showed that the hydrolate was rich in monoterpene compounds while sesquiterpene compounds were missing. A very low intensity relating to sesquiterpenes was recorded only by PTR-ToF-MS technique. Full article
Show Figures

Figure 1

12 pages, 914 KB  
Article
Response of Oats to Fertilisation with Compost and Mineral Nitrogen in a Pot Experiment
by Wacław Jarecki, Joanna Korczyk-Szabó, Milan Macák, Anita Zapałowska, Puchooa Daneshwar and Miroslav Habán
Nitrogen 2025, 6(3), 76; https://doi.org/10.3390/nitrogen6030076 (registering DOI) - 1 Sep 2025
Abstract
Organic fertilisers release nutrients more slowly than mineral fertilisers, which is why combining organic and mineral fertilisation gives good results in crop cultivation. In the conducted pot experiment, the reaction of oats to compost fertilisation with or without additional nitrogen mineral fertilisation was [...] Read more.
Organic fertilisers release nutrients more slowly than mineral fertilisers, which is why combining organic and mineral fertilisation gives good results in crop cultivation. In the conducted pot experiment, the reaction of oats to compost fertilisation with or without additional nitrogen mineral fertilisation was examined. The following treatments were used: A, control (no fertilisation); B, compost (sewage sludge 80% + sawdust 20%); C, compost (garden and park waste 80% + sawdust 20%); D, compost (sewage sludge 40% + garden and park waste 40% + sawdust 20%); E, compost B with nitrogen fertilisation (30 N kg ha−1); F, compost C with nitrogen fertilisation (30 N kg ha−1); and G, compost D with nitrogen fertilisation (30 N kg ha−1). The study results indicated that the composts used had an altering impact on the soil’s chemical composition by the end of the experiment. Overall, the lowest levels of nutrients were recorded in the control group, indicating that the composts increased soil fertility. Oat plants were better nourished (SPAD—soil–plant analysis development) after fertilisation with sewage sludge composts than garden and park waste composts. However, the most favourable results were obtained in the treatments where organic fertilisation (composts) was combined with mineral fertilisation (nitrogen). All fertilisation treatments significantly enhanced plant height and the number of panicles in the pot compared to the control. The highest values for the number of grains in the panicle, thousand-grain weight, grain mass from the pot, and protein content in the grain were observed after applying organic–mineral fertilisation. Therefore, fertilisation with composts, especially composts combined with mineral nitrogen, can be recommended for oat cultivation. Full article
Show Figures

Figure 1

24 pages, 2945 KB  
Article
Comprehensive Investigation of Qatar Soil Bacterial Diversity and Its Correlation with Soil Nutrients
by Muhammad Riaz Ejaz, Kareem Badr, Farzin Shabani, Zahoor Ul Hassan, Nabil Zouari, Roda Al-Thani and Samir Jaoua
Microbiol. Res. 2025, 16(9), 196; https://doi.org/10.3390/microbiolres16090196 - 1 Sep 2025
Abstract
Arid and semi-arid regions show distinctive bacterial groups important for the sustainability of ecosystems and soil health. This study aims to investigate how environmental factors across five Qatari soils influence the taxonomic composition of bacterial communities and their predicted functional roles using 16S [...] Read more.
Arid and semi-arid regions show distinctive bacterial groups important for the sustainability of ecosystems and soil health. This study aims to investigate how environmental factors across five Qatari soils influence the taxonomic composition of bacterial communities and their predicted functional roles using 16S rRNA amplicon sequencing and soil chemical analysis. Soil samples from five different locations in Qatar (three coastal and two inland) identified 26 bacterial phyla, which were dominated by Actinomycetota (35–43%), Pseudomonadota (12–16%), and Acidobacteriota (4–13%). Species-level analysis discovered taxa such as Rubrobacter tropicus, Longimicrobium terrae, Gaiella occulta, Kallotenue papyrolyticum, and Sphingomonas jaspsi, suggesting the presence of possible novel microbial families. The functional predictions showed development in pathways related to amino acid metabolism, carbohydrate metabolism, and stress tolerance. In addition, heavy-metal-related taxa, which are known to harbor genes for metal resistance mechanisms including efflux pumps, metal chelation, and oxidative stress tolerance. The presence of Streptomyces, Pseudomonas, and Bacillus highlights their roles in stress tolerance, biodegradation, and metabolite production. These findings improve the understanding of microbial roles in dry soils, especially in nutrient cycling and ecosystem resilience. They highlight the importance of local bacteria for sustaining desert soil functions. Further research is needed to validate these relationships, using metabolomic approaches while monitoring microbial-community-changing aspects under fluctuating environmental conditions. Full article
Show Figures

Graphical abstract

18 pages, 3869 KB  
Article
Selective and Closed-Loop Recycling of Different Metals from Spent Lithium-Ion Batteries Through Phosphoric Acid Leaching: Parameter Optimization and Regulation of Reaction Kinetics
by Linling Guo, Zihao Chen, Yutong Guo, Chaoyang Chen, Yan Wang and Xiangping Chen
Sustainability 2025, 17(17), 7862; https://doi.org/10.3390/su17177862 (registering DOI) - 1 Sep 2025
Abstract
The sustainable recycling of valuable metals from spent lithium-ion batteries (LIBs) is critical for resource conservation and environmental protection but remains challenging due to the complex coexistence of target and impurity metals. This study systematically investigates the selective leaching behaviors of metals (Co, [...] Read more.
The sustainable recycling of valuable metals from spent lithium-ion batteries (LIBs) is critical for resource conservation and environmental protection but remains challenging due to the complex coexistence of target and impurity metals. This study systematically investigates the selective leaching behaviors of metals (Co, Li, Cu, Fe, Al) in phosphoric acid media, revealing that lithium could be preferentially extracted in mild acidic conditions (0.8 mol/L H3PO4), while complete dissolution of both Li and Co was achieved in concentrated acid (2.0 mol/L H3PO4). Kinetic analysis demonstrated that metal leaching followed a chemically controlled mechanism, with distinct extraction sequences: Li > Cu~Co > Fe > Al in dilute acid and Cu > Al~Li > Fe > Co in concentrated acid. Furthermore, we developed a closed-loop process wherein oxalic acid simultaneously precipitates Co/Li while regenerating H3PO4, enabling acid reuse with minimal efficiency loss during cyclic leaching. These findings establish a single-step phosphoric acid leaching strategy for selective metal recovery, governed by tunable acid concentration and reaction kinetics, offering a sustainable pathway for LIBs recycling. Full article
(This article belongs to the Section Waste and Recycling)
Show Figures

Figure 1

Back to TopTop