Mosaic Structure of GaN Film Grown on Sapphire Substrate by AP-MOCVD: Impact of Thermal Annealing on the Tilt and Twist Angles
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. In Situ Monitoring
3.2. Surface Morphology
3.3. Tilt and Twist Angles
3.4. Optical Properties
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Feng, M.; Liu, J.; Sun, Q.; Yang, H. III-nitride semiconductor lasers grown on Si, Prog. Quantum Electron. 2021, 77, 100323. [Google Scholar] [CrossRef]
- Chen, Y.T.; Lin, B.H.; Lu, S.H.; Li, Z.W.; Tsai, Y.S.; Sun, T.P.; Sermon, Y.C.; Chen, W.H. Deterioration of near-UV GaN-based LEDs in seawater vapour. Results Phys. 2020, 19, 103432. [Google Scholar] [CrossRef]
- Chung, K.; Lee, C.-H.; Yi, G.-C. Transferable GaN layers grown on ZnO-coated graphene layers for optoelectronic devices. Science 2010, 330, 655. [Google Scholar] [CrossRef] [PubMed]
- Doi, T. Current Status and Future Prospects of GaN Substrates for Green Devices. Sens. Mater. 2013, 25, 141. [Google Scholar] [CrossRef]
- Li, S.; Waag, A. GaN based nanorods for solid state lighting. J. Appl. Phys. 2012, 111, 071101. [Google Scholar] [CrossRef]
- Rafin, S.M.S.H.; Ahmed, R.; Haque, A.; Hossain, K.; Haque, A.; Mohammed, O.A. Power Electronics Revolutionized: A Comprehensive Analysis of Emerging Wide and Ultrawide Bandgap Devices. Micromachines 2023, 14, 2045. [Google Scholar] [CrossRef]
- Simon, J.; Protasenko, V.; Lian, C.; Xing, H.; Jena, D. Polarization-Induced Hole Doping in Wide–Band-Gap Uniaxial Semiconductor Heterostructures. Science 2010, 327, 60. [Google Scholar] [CrossRef]
- Lahrèche, H.; Vennéguès, P.; Beaumont, B.; Gibart, P. Growth of high-quality GaN by low-pressure metal-organic vapour phase epitaxy (LP-MOVPE) from 3D islands and lateral overgrowth. J. Cryst. Growth 1999, 205, 245. [Google Scholar] [CrossRef]
- Cheng, J.-H.; Wu, Y.S.; Liao, W.-C.; Lin, B.-W. Improved crystal quality and performance of GaN-based light-emitting diodes by decreasing the slanted angle of patterned sapphire. Appl. Phys. Lett. 2010, 96, 051109. [Google Scholar] [CrossRef]
- Tao, H.; Xu, S.; Zhang, J.; Su, H.; Gao, Y.; Zhang, Y.; Zhou, H.; Hao, Y. Improved crystal quality and enhanced optical performance of GaN enabled by ion implantation induced high-quality nucleation. Opt. Express 2023, 31, 20850. [Google Scholar] [CrossRef]
- Zolper, J.C.; Han, J.; Biefeld, R.M.; Van Deusen, S.B.; Wampler, W.R.; Reiger, D.J.; Pearton, S.J.; Williams, J.S.; Tan, H.H.; Karlicek, R.F., Jr.; et al. Si-implantation activation annealing of GaN up to 1400 °C. J. Electron. Mater. 1998, 27, 179. [Google Scholar] [CrossRef]
- Siegle, H.; Kaczmarczyk, G.; Filippidis, L.; Litvinchuk, A.P.; Hoffmann, A.; Thomsen, C. Zone-boundary phonons in hexagonal and cubic GaN. Phys. Rev. B 1997, 55, 7000. [Google Scholar] [CrossRef]
- Chen, Z.T.; Xu, K.; Guo, L.P.; Yang, Z.J.; Su, Y.Y.; Yang, X.L. Effect of long anneals on the densities of threading dislocations in GaN films grown by metal-organic chemical vapor deposition. J. Cryst. Growth 2006, 294, 156. [Google Scholar] [CrossRef]
- Porowski, S.; Jun, J.; Krukowski, S.; Grzegory, I.; Leszczynski, M.; Suski, T. Annealing of gallium nitride under high-N2 pressure. Phys. B Condens. Matter 1999, 265, 295. [Google Scholar] [CrossRef]
- Nakamura, S. InGaN-based violet laser diodes. Semicond. Sci. Technol. 1999, 14, R27. [Google Scholar] [CrossRef]
- Kung, P.; Sun, C.J.; Saxler, A.; Ohsato, H.; Razeghi, M. Crystallography of epitaxial growth of wurtzite-type thin films on sapphire substrates. J. Appl. Phys. 1994, 75, 4515. [Google Scholar] [CrossRef]
- Wu, C.-Y.; Chao, T.-S.; Chou, Y.-C. A high thermal stability ohmic contact for GaN-based devices. Nanoscale Adv. 2023, 5, 5361–5366. [Google Scholar] [CrossRef]
- Unland, J.; Onderka, B.; Davydov, A.; Schmid-Fetzer, R. Thermodynamics and Phase Stability in the Ga–N System. J. Cryst. Growth 2003, 256, 33. [Google Scholar] [CrossRef]
- Nathan, S.; Siddha, P. Progress in Ammonothermal Crystal Growth of Gallium Nitride from 2017–2023: Process, Defects and Devices. Crystals 2023, 13, 1004. [Google Scholar] [CrossRef]
- Ikball Ahamed, E.M.K.; Sen Gupta, A.K.; Khan, M.N.I.; Matin, M.A.; Amin, N. Effect of Annealing Temperature on the Structural and Optical Properties of CdS Thin Films Deposited by CBD. In Proceedings of the 2020 IEEE Region 10 Symposium, Dhaka, Bangladesh, 5–7 June 2020; p. 1168. [Google Scholar]
- Benjamin, H.B.; Bharathi Mohan, D. The effect of in-situ and post deposition annealing towards the structural optimization studies of RF sputtered SnS and Sn2S3 thin films for solar cell application. Sol. Energy 2019, 189, 207. [Google Scholar] [CrossRef]
- Sharmila, B.; Monoj, K.S.; Priyanka, D. Impact of annealing on structural and optical properties of ZnO thin films. Microelectron. J. 2023, 135, 105759. [Google Scholar] [CrossRef]
- Chen, Z.T.; Xu, K.; Guo, L.P.; Yang, Z.J.; Pan, Y.B.; Su, Y.Y.; Zhang, H.; Shen, B.; Zhang, G.Y. Mosaic Structure Evolution in GaN Films with Annealing Time Grown by Metalorganic Chemical Vapour Deposition. Chin. Phys. Lett. 2006, 23, 1257. Available online: https://cpl.iphy.ac.cn/en/article/id/40875 (accessed on 6 December 2005).
- Liu, H.F.; Chen, H.; Xu, M.; Wan, L.; Mai, Z.H.; Huang, Q.; Zhou, J.M. Effect of rapid thermal annealing on the structural characteristics of cubic GaN epilayer grown on GaAs (001) substrates by molecular beam epitaxy. J. Cryst. Growth 2001, 222, 503. [Google Scholar] [CrossRef]
- Bchetnia, A.; Touré, A.; Lafford, T.; Benzarti, Z.; Halidou, I.; Habchi, M.; El Jani, B. Effect of thickness on structural and electrical properties of GaN films grown on SiN-treated sapphire. J. Cryst Growth 2007, 308, 283. [Google Scholar] [CrossRef]
- He, L.; Moon, Y.T.; Xie, J.; Muñoz, M.; Johnstone, D.; Morkoç, H. Gallium desorption kinetics on (0001) GaN surface during the growth of GaN by molecular-beam epitaxy. Appl. Phys. Lett. 2006, 88, 071901. [Google Scholar] [CrossRef]
- Schoonmaker, R.C.; Buhl, A.; Lemley, J. Vaporization Catalysis. The Decomposition of Gallium Nitride. J. Phys. Chem. 1965, 69, 3455. [Google Scholar] [CrossRef]
- Koleske, D.D.; Wickenden, A.E.; Henry, R.L.; Twigg, M.E.; Culbertson, J.C.; Gorman, R.J. Enhanced GaN decomposition in H2 near atmospheric pressures. Appl. Phys. Lett. 1998, 73, 2018. [Google Scholar] [CrossRef]
- Fathallah, W.; Boufaden, T.; El Jani, B. Analysis of GaN decomposition in an atmospheric MOVPE vertical reactor. Phys. Status Solidi C 2007, 4, 145. [Google Scholar] [CrossRef]
- Heying, B.; Wu, X.H.; Keller, S.; Li, Y.; Kapolnek, D.; Keller, B.P.; DenBaars, S.P.; Speck, J.S. Role of threading dislocation structure on the X-ray diffraction peak widths in epitaxial GaN films. Appl. Phys. Lett. 1996, 68, 643. [Google Scholar] [CrossRef]
- Srikant, V.; Speck, J.S.; Clarke, D.R. Mosaic structure in epitaxial thin films having large lattice mismatch. J. Appl. Phys. 1997, 82, 4286. [Google Scholar] [CrossRef]
- Heinke, H.; Kirchner, V.; Einfeldt, S.; Hommel, D. X-ray diffraction analysis of the defect structure in epitaxial GaN. Appl. Phys. Lett. 2000, 77, 2145. [Google Scholar] [CrossRef]
- Tian, Y.; Zhang, L.; Wu, Y.; Shao, Y.; Dai, Y.; Zhang, H. Characterization of dislocations in MOCVD-grown GaN using a high temperature annealing method. CrystEngComm 2014, 16, 2317. [Google Scholar] [CrossRef]
- Thompson, C.V. Grain Growth in Thin Films. A. Rev. 1990, 20, 245. [Google Scholar] [CrossRef]
- Masanori, M.; Miki, M.; Susumu, T.; Kazuhiro, I. Grain Growth Mechanism of Cu Thin Films. Mater. Trans. 2005, 46, 1737. [Google Scholar] [CrossRef]
- Anuradha, P.; Chander, S.; Anshu, S.; Nehra, S.P.; Dhaka, M.S. Impact of low temperature annealing on structural, optical, electrical and morphological properties of ZnO thin films grown by RF sputtering for photovoltaic applications. Opt. Mater. 2015, 49, 51. [Google Scholar] [CrossRef]
- Artur, S.; Alexey, P. Mechanisms of stress generation and relaxation in thin films and coatings. AIP Conf. Proc. 2014, 1623, 575. [Google Scholar] [CrossRef]
- Metzger, T.; Höpler, R.; Born, E.; Ambacher, O.; Stutzmann, M.; Stömmer, R.; Schuster, M.; Göbel, H.; Christiansen, S.; Albrecht, M.; et al. Defect structure of epitaxial GaN films determined by transmission electron microscopy and triple-axis X-ray diffractometry. Philos. Mag. A 1998, 77, 1013. [Google Scholar] [CrossRef]
- Ashby, C.I.H.; Mitchell, C.C.; Han, J.; Missert, N.A.; Provencio, P.P.; Follstaedt, D.M.; Peake, G.M.; Griego, L. Peake, Leonardo Griego, Low-dislocation-density GaN from a single growth on a textured substrate. Appl. Phys. Lett. 2000, 77, 3233. [Google Scholar] [CrossRef]
- Datta, R.; Kappers, M.J.; Vickers, M.E.; Barnard, J.S.; Humphreys, C.J. Growth and characterisation of GaN with reduced dislocation density. Superlattices Microstruct. 2004, 36, 393. [Google Scholar] [CrossRef]
- Zhu, Q.; Botchkarev, A.; Kim, W.; Aktas, Ö; Salvador, A.; Sverdlov, B.; Mokoc, H.; Tsen, S.-C.Y.; Smith, D.J. Structural properties of GaN films grown on sapphire by molecular beam epitaxy. Appl. Phys. Lett. 1996, 68, 1141. [Google Scholar] [CrossRef]
- Shen, X.Q.; Matsuhata, H.; Okumura, H. Reduction of the threading dislocation density in GaN films grown on vicinal sapphire (0001) substrates. Appl. Phys. Lett. 2005, 86, 021912. [Google Scholar] [CrossRef]
- Reshchikov, M.A.; Morkoç, H.J. Luminescence properties of defects in GaN. J. Appl. Phys 2005, 97, 061301. [Google Scholar] [CrossRef]
- Reshchikov, M.A. Measurement and analysis of photoluminescence in GaN. J. Appl. Phys. 2021, 129, 121101. [Google Scholar] [CrossRef]
Samples | Annealing Temperature | FWHM (tilt) ×10−3 (rad) | FHWM (twist) × 10−3 (rad) | Dscrew (tilt) ×108 (cm−2) | Dedge ×109 (cm−2) | Ddislocations ×109 (cm−2) |
---|---|---|---|---|---|---|
A00 | As grown | 2.47 | 5.24 | 5.2 | 6.2 | 6.7 |
A01 | 1000 °C | 1.85 | 3.98 | 2.9 | 3.6 | 3.9 |
A02 | 1050 °C | 1.22 | 2.70 | 1.2 | 1.6 | 1.7 |
A03 | 1100 °C | 2.09 | 4.19 | 3.7 | 4.1 | 4.4 |
A04 | 1120 °C | 2.69 | 4.36 | 6.5 | 4.3 | 5.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laifi, J.; Hasaneen, M.F.; Bouazizi, H.; Alsahli, F.H.; Lafford, T.A.; Bchetnia, A. Mosaic Structure of GaN Film Grown on Sapphire Substrate by AP-MOCVD: Impact of Thermal Annealing on the Tilt and Twist Angles. Crystals 2025, 15, 97. https://doi.org/10.3390/cryst15010097
Laifi J, Hasaneen MF, Bouazizi H, Alsahli FH, Lafford TA, Bchetnia A. Mosaic Structure of GaN Film Grown on Sapphire Substrate by AP-MOCVD: Impact of Thermal Annealing on the Tilt and Twist Angles. Crystals. 2025; 15(1):97. https://doi.org/10.3390/cryst15010097
Chicago/Turabian StyleLaifi, J., M. F. Hasaneen, H. Bouazizi, Fatimah Hafiz Alsahli, T. A. Lafford, and A. Bchetnia. 2025. "Mosaic Structure of GaN Film Grown on Sapphire Substrate by AP-MOCVD: Impact of Thermal Annealing on the Tilt and Twist Angles" Crystals 15, no. 1: 97. https://doi.org/10.3390/cryst15010097
APA StyleLaifi, J., Hasaneen, M. F., Bouazizi, H., Alsahli, F. H., Lafford, T. A., & Bchetnia, A. (2025). Mosaic Structure of GaN Film Grown on Sapphire Substrate by AP-MOCVD: Impact of Thermal Annealing on the Tilt and Twist Angles. Crystals, 15(1), 97. https://doi.org/10.3390/cryst15010097