Binder-Free Hexagonal Boron Nitride Nanosheets (BNNSs) as Protective Coatings for Copper, Steel, and Wood: A Review
Abstract
:1. Introduction
2. Evaluation of BNNSs Binder-Free Coating on Copper, Steel, and Wood Substrates
2.1. Evaluation of BNNSs Binder-Free Coating on Copper
2.2. Evaluation of BNNSs Binder-Free Coating on Steel
2.3. Evaluation of BNNSs Binder-Free Coating on Wood
3. Conclusions and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhao, H.; Yue, Y.; Guo, L.; Wu, J.; Zhang, Y.; Li, X.; Mao, S.; Han, X. Cloning Nacre’s 3D Interlocking Skeleton in Engineering Composites to Achieve Exceptional Mechanical Properties. Adv. Mater. 2016, 28, 5099–5105. [Google Scholar] [CrossRef]
- Verma, C.; Ebenso, E.E.; Quraishi, M.A. Corrosion inhibitors for ferrous and non-ferrous metals and alloys in ionic sodium chloride solutions: A review. J. Mol. Liq. 2017, 248, 927–942. [Google Scholar] [CrossRef]
- Ormellese, M.; Beretta, S.; Brugnetti, F.; Brenna, A. Effects of non-stationary stray current on carbon steel buried pipelines under cathodic protection. Constr. Build. Mater. 2021, 281, 122645. [Google Scholar] [CrossRef]
- Osipenko, M.A.; Kharitonov, D.S.; Makarova, I.V.; Romanovsky, V.I.; Kurilo, I.I. Corrosion Behavior of Modified Anodic Oxide Coatings on AD31 Aluminium Alloy. Prot. Met. Phys. Chem. Surf. 2021, 57, 550–558. [Google Scholar] [CrossRef]
- Yanagimoto, H.; Saito, K.; Takahashi, H.; Chiba, M. Changes in the structure and corrosion protection ability of porous anodic oxide films on pure Al and Al alloys by pore sealing treatment. Materials 2022, 15, 8544. [Google Scholar] [CrossRef]
- Nadeem, A.; Maqsood, M.F.; Raza, M.A.; Karim, M.R.; Ghafoor, F.; Lee, Y.; Ali, S.; Rehman, M.A.; Khan, M.F. Thermally stable and anti-corrosive polydimethyl siloxane composite coatings based on nanoforms of boron nitride. Inorg. Chem. Commun. 2024, 168, 112989. [Google Scholar] [CrossRef]
- Maqsood, M.F.; Raza, M.A.; Ghauri, F.A.; Rehman, Z.U.; Ilyas, M.T. Corrosion study of graphene oxide coatings on AZ31B magnesium alloy. J. Coat. Technol. Res. 2020, 17, 1321–1329. [Google Scholar] [CrossRef]
- Maqsood, M.F.; Raza, M.A.; Rehman, Z.U.; Abid, M.; Inam, A.; Iqbal, S. Corrosion study of zinc rich epoxy ester paints for cold galvanizing of mild steel. Surf. Rev. Lett. 2021, 28, 2150064. [Google Scholar] [CrossRef]
- Maqsood, M.F.; Raza, M.A.; Rehman, Z.U.; Tayyeb, A.; Makhdoom, M.A.; Ghafoor, F.; Latif, U.; Khan, M.F. Role of Solvent Used in Development of Graphene Oxide Coating on AZ31B Magnesium Alloy: Corrosion Behavior and Biocompatibility Analysis. Nanomaterials 2022, 12, 3745. [Google Scholar] [CrossRef]
- Huang, H.; Sheng, X.; Tian, Y.; Zhang, L.; Chen, Y.; Zhang, X. Two-dimensional nanomaterials for anticorrosive polymeric coatings: A review. Ind. Eng. Chem. Res. 2020, 59, 15424–15446. [Google Scholar] [CrossRef]
- Habibiyan, A.; Ramezanzadeh, B.; Mahdavian, M.; Bahlakeh, G.; Kasaeian, M. Rational assembly of mussel-inspired polydopamine (PDA)-Zn (II) complex nanospheres on graphene oxide framework tailored for robust self-healing anti-corrosion coatings application. Chem. Eng. J. 2020, 391, 123630. [Google Scholar] [CrossRef]
- Xia, Z.; Liu, G.; Dong, Y.; Zhang, Y. Anticorrosive epoxy coatings based on polydopamine modified molybdenum disulfide. Prog. Org. Coat. 2019, 133, 154–160. [Google Scholar] [CrossRef]
- Khan, M.H.; Liu, H.K.; Sun, X.; Yamauchi, Y.; Bando, Y.; Golberg, D.; Huang, Z. Few-atomic-layered hexagonal boron nitride: CVD growth, characterization, and applications. Mater. Today 2017, 20, 611–628. [Google Scholar] [CrossRef]
- Li, M.; Huang, G.; Chen, X.; Yin, J.; Zhang, P.; Yao, Y.; Shen, J.; Wu, Y.; Huang, J. Perspectives on environmental applications of hexagonal boron nitride nanomaterials. Nano Today 2022, 44, 101486. [Google Scholar] [CrossRef]
- Abubakr, M.; Elahi, E.; Rehman, S.; Dahshan, A.; Khan, M.A.; Rabeel, M.; Abbas, Z.; Maqsood, M.F.; Rehman, M.A.; Jonghwa, E. Innovations in self-powered nano-photonics of emerging and flexible two-dimensional materials. Mater. Today Phys. 2023, 39, 101285. [Google Scholar] [CrossRef]
- Kanwal, R.; Maqsood, M.F.; Raza, M.A.; Inam, A.; Waris, M.; Rehman, Z.U.; Mehdi, S.M.Z.; Abbas, N.; Lee, N. Polypyrrole coated carbon fiber/magnetite/graphene oxide reinforced hybrid epoxy composites for high strength and electromagnetic interference shielding. Mater. Today Commun. 2024, 38, 107684. [Google Scholar] [CrossRef]
- Latif, U.; Raza, M.A.; Rehman, Z.U.; Iqbal, J.; Lee, N.; Mehdi, S.M.Z.; Maqsood, M.F.; Hussain, S. Binder free heteroatom-doped graphene oxide as high energy density electrodes for supercapacitor applications. Int. J. Energy Res. 2022, 46, 9643–9666. [Google Scholar] [CrossRef]
- Latif, U.; Raza, M.A.; Rehman, Z.U.; Maqsood, M.F.; Mehdi, S.M.Z.; Ali, S.; Khan, M.F.; Kumar, S. Role of sulfur and phosphorous doping on the electrochemical performance of graphene oxide-based electrodes. Electrochim. Acta 2024, 497, 144581. [Google Scholar] [CrossRef]
- Maqsood, M.F.; Zubair, M.A.A.; Raza, M.A.; Mehdi, S.M.Z.; Lee, N.; Rehman, Z.U.; Park, K.; Bhatti, M.U.; Latif, U.; Tawakkal, A. Fabrication and characterization of graphene oxide and glass fiber-based hybrid epoxy composites. Polym. Compos. 2022, 43, 8072–8083. [Google Scholar] [CrossRef]
- Raza, M.A.; Rehman, Z.U.; Tanvir, M.G.; Maqsood, M.F. Metal oxide-conducting polymer-based composite electrodes for energy storage applications. In Renewable Polymers and Polymer-Metal Oxide Composites; Elsevier: Amsterdam, The Netherlands, 2022; pp. 195–251. [Google Scholar]
- Rehman, Z.U.; Raza, M.A.; Chishti, U.N.; Hussnain, A.; Maqsood, M.F.; Iqbal, M.Z.; Iqbal, M.J.; Latif, U. Role of Carbon Nanomaterials on Enhancing the Supercapacitive Performance of Manganese Oxide-Based Composite Electrodes. Arab. J. Sci. Eng. 2022, 48, 8371–8386. [Google Scholar] [CrossRef]
- Raza, M.A.; Maqsood, M.F.; Rehman, Z.U.; Westwood, A.; Inam, A.; Sattar, M.M.S.; Ghauri, F.A.; Ilyas, M.T. Thermally Reduced Graphene Oxide-Reinforced Acrylonitrile Butadiene Styrene Composites Developed by Combined Solution and Melt Mixing Method. Arab. J. Sci. Eng. 2020, 45, 9559–9568. [Google Scholar] [CrossRef]
- Saji, V.S. 2D hexagonal boron nitride (h-BN) nanosheets in protective coatings: A literature review. Heliyon 2023, 9, e19362. [Google Scholar] [CrossRef]
- Nadeem, A.; Raza, M.A.; Maqsood, M.F.; Ilyas, M.T.; Westwood, A.; Rehman, Z.U. Characterization of boron nitride nanosheets synthesized by boron-ammonia reaction. Ceram. Int. 2020, 46, 20415–20422. [Google Scholar] [CrossRef]
- Ghafoor, F.; Kim, H.; Ghafoor, B.; Rehman, S.; Khan, M.A.; Aziz, J.; Rabeel, M.; Maqsood, M.F.; Dastgeer, G.; Lee, M.-J. Interface engineering in ZnO/CdO hybrid nanocomposites to enhanced resistive switching memory for neuromorphic computing. J. Colloid Interface Sci. 2024, 659, 1–10. [Google Scholar] [CrossRef]
- Latif, U.; Maqsood, M.F. Lanthanum-zinc mixed metal oxide as electrode material for supercapacitor applications. Mater. Chem. Phys. 2024, 317, 129158. [Google Scholar] [CrossRef]
- Latif, U.; Rehman, Z.U.; Maqsood, M.F.; Raza, M.A.; Ali, S.; Iqbal, M.J.; Mehdi, S.M.Z.; Lee, N. In situ growth of nickel ammonium phosphate ribbons on nickel foam for supercapacitor applications. J. Energy Storage 2023, 73, 109024. [Google Scholar] [CrossRef]
- Maqsood, M.F.; Latif, U.; Sheikh, Z.A.; Abubakr, M.; Rehman, S.; Khan, K.; Khan, M.A.; Kim, H.; Ouladsmane, M.; Rehman, M.A. A comprehensive study of Bi2Sr2Co2Oy misfit layered oxide as a supercapacitor electrode material. Inorg. Chem. Commun. 2023, 158, 111487. [Google Scholar] [CrossRef]
- Maqsood, M.F.; Latif, U.; Mehdi, S.M.Z.; Rehman, Z.U.; Raza, M.A.; Ghafoor, F.; Abubakr, M.; Lee, N.; Khan, M.F. Effect of “Mn” substitution at B-site, on the crystal structure and energy storage performance of the La0.75Sr0.25CoO3 perovskite. J. Ind. Eng. Chem. 2024, 39, 587–600. [Google Scholar] [CrossRef]
- Rehman, Z.U.; Raza, M.A.; Tariq, A.; Chishti, U.N.; Maqsood, M.F.; Lee, N.; Awais, M.H.; Mehdi, S.M.Z.; Inam, A. La0.75Sr0.25Cr0.5Mn0.5O3 perovskite developed for supercapacitor applications. J. Energy Storage 2020, 32, 101951. [Google Scholar] [CrossRef]
- Huang, Y.; Zhao, C.; Li, Y.; Wang, C.; Yuan, W.; Shen, T.; Liu, J.; Cheng, D.; Wu, C.; Shen, Q. A smart sol-gel coating incorporating pH-responsive BTA-ZIF-8 MOF assembled hexagonal boron nitride for active/passive corrosion protection of 1060 aluminum alloy. Surf. Coat. Technol. 2023, 474, 130072. [Google Scholar] [CrossRef]
- Sharma, V.; Kagdada, H.L.; Jha, P.K.; Śpiewak, P.; Kurzydłowski, K.J. Thermal transport properties of boron nitride based materials: A review. Renew. Sustain. Energy Rev. 2020, 120, 109622. [Google Scholar] [CrossRef]
- Arenal, R.; Lopez-Bezanilla, A. Boron nitride materials: An overview from 0D to 3D (nano)structures. WIREs Comput. Mol. Sci. 2015, 5, 299–309. [Google Scholar] [CrossRef]
- Shtansky, D.V.; Matveev, A.T.; Permyakova, E.S.; Leybo, D.V.; Konopatsky, A.S.; Sorokin, P.B. Recent Progress in Fabrication and Application of BN Nanostructures and BN-Based Nanohybrids. Nanomaterials 2022, 12, 2810. [Google Scholar] [CrossRef] [PubMed]
- Tay, R.Y.; Li, H.; Wang, H.; Lin, J.; Ng, Z.K.; Shivakumar, R.; Bolker, A.; Shakerzadeh, M.; Tsang, S.H.; Teo, E.H.T. Advanced nano boron nitride architectures: Synthesis, properties and emerging applications. Nano Today 2023, 53, 102011. [Google Scholar] [CrossRef]
- Shtansky, D.V.; Firestein, K.L.; Golberg, D.V. Fabrication and application of BN nanoparticles, nanosheets and their nanohybrids. Nanoscale 2018, 10, 17477–17493. [Google Scholar] [CrossRef]
- Angizi, S.; Alem, S.A.A.; Azar, M.H.; Shayeganfar, F.; Manning, M.I.; Hatamie, A.; Pakdel, A.; Simchi, A. A comprehensive review on planar boron nitride nanomaterials: From 2D nanosheets towards 0D quantum dots. Prog. Mater. Sci. 2022, 124, 100884. [Google Scholar] [CrossRef]
- Rathinasabapathy, S.; Santhosh, M.; Asokan, M. Significance of boron nitride in composites and its applications. In Recent Advances in Boron-Containing Materials; IntechOpen: London, UK, 2020; p. 63. [Google Scholar]
- Ronning, C.; Feldermann, H.; Hofsäss, H. Growth, doping and applications of cubic boron nitride thin films. Diam. Relat. Mater. 2000, 9, 1767–1773. [Google Scholar] [CrossRef]
- Mohammad, S.N. Electrical characteristics of thin film cubic boron nitride. Solid-State Electron. 2002, 46, 203–222. [Google Scholar] [CrossRef]
- Fedoseev, D.; Lavrent’ev, A.; Varshavskaya, I.; Bochko, A.; Karyuk, G. Determination of the thermal conductivities of refractory materials with the aid of an optical quantum generator. Sov. Powder Metall. Met. Ceram. 1978, 17, 240–241. [Google Scholar] [CrossRef]
- Liu, Y.; Zhan, G.; Wang, Q.; He, D.; Zhang, J.; Liang, A.; Moellendick, T.E.; Zhao, L.; Li, X. Hardness of Polycrystalline Wurtzite boron nitride (wBN) compacts. Sci. Rep. 2019, 9, 10215. [Google Scholar] [CrossRef]
- Chkhartishvili, L. Density of electron states in wurtzite-like boron nitride: A quasi-classical calculation. Mater. Sci. Ind. J. 2006, 2, 18–23. [Google Scholar]
- Hayat, A.; Sohail, M.; Hamdy, M.S.; Taha, T.; AlSalem, H.S.; Alenad, A.M.; Amin, M.A.; Shah, R.; Palamanit, A.; Khan, J. Fabrication, characteristics, and applications of boron nitride and their composite nanomaterials. Surf. Interfaces 2022, 29, 101725. [Google Scholar] [CrossRef]
- Chen, C.-C.; Li, Z.; Shi, L.; Cronin, S.B. Thermoelectric transport across graphene/hexagonal boron nitride/graphene heterostructures. Nano Res. 2015, 8, 666–672. [Google Scholar] [CrossRef]
- McKinney, R.; Gorai, P.; Toberer, E.S.; Stevanovic, V. Rapid prediction of anisotropic lattice thermal conductivity: Application to layered materials. Chem. Mater. 2019, 31, 2048–2057. [Google Scholar] [CrossRef]
- Maiti, K.; Thanh, T.D.; Sharma, K.; Hui, D.; Kim, N.H.; Lee, J.H. Highly efficient adsorbent based on novel cotton flower-like porous boron nitride for organic pollutant removal. Compos. Part B Eng. 2017, 123, 45–54. [Google Scholar] [CrossRef]
- Duan, L.; Wang, B.; Heck, K.; Guo, S.; Clark, C.A.; Arredondo, J.; Wang, M.; Senftle, T.P.; Westerhoff, P.; Wen, X. Efficient photocatalytic PFOA degradation over boron nitride. Environ. Sci. Technol. Lett. 2020, 7, 613–619. [Google Scholar] [CrossRef]
- Hafeez, A.; Karim, Z.A.; Ismail, A.F.; Samavati, A.; Said, K.A.M.; Selambakkannu, S. Functionalized boron nitride composite ultrafiltration membrane for dye removal from aqueous solution. J. Membr. Sci. 2020, 612, 118473. [Google Scholar] [CrossRef]
- Kaviya, S.; Kabila, S.; Jayasree, K. Hexagonal bottom-neck ZnO nano pencils: A study of structural, optical and antibacterial activity. Mater. Lett. 2017, 204, 57–60. [Google Scholar] [CrossRef]
- Bian, Y.; Li, L.; Song, H.; Su, Y.; Lv, Y. Porous boron nitride: A novel metal-free cataluminescence material for high performance H2S sensing. Sens. Actuators B Chem. 2021, 332, 129512. [Google Scholar] [CrossRef]
- Babamiri, O.; Vanaei, A.; Guo, X.; Wu, P.; Richter, A.; Ng, K. Numerical Simulation of Water Quality and Self-Purification in a Mountainous River Using QUAL2KW. J. Environ. Inform. 2021, 37, 26–35. [Google Scholar] [CrossRef]
- Mateti, S.; Wong, C.S.; Liu, Z.; Yang, W.; Li, Y.; Li, L.H.; Chen, Y. Biocompatibility of boron nitride nanosheets. Nano Res. 2018, 11, 334–342. [Google Scholar] [CrossRef]
- Zhi, C.; Bando, Y.; Terao, T.; Tang, C.; Kuwahara, H.; Golberg, D. Towards Thermoconductive, Electrically Insulating Polymeric Composites with Boron Nitride Nanotubes as Fillers. Adv. Funct. Mater. 2009, 19, 1857–1862. [Google Scholar] [CrossRef]
- Zeng, X.; Sun, J.; Yao, Y.; Sun, R.; Xu, J.-B.; Wong, C.-P. A combination of boron nitride nanotubes and cellulose nanofibers for the preparation of a nanocomposite with high thermal conductivity. ACS Nano 2017, 11, 5167–5178. [Google Scholar] [CrossRef]
- Nakhmanson, S.M.; Calzolari, A.; Meunier, V.; Bernholc, J.; Nardelli, M.B. Spontaneous polarization and piezoelectricity in boron nitride nanotubes. Phys. Rev. B 2003, 67, 235406. [Google Scholar] [CrossRef]
- Kang, J.H.; Sauti, G.; Park, C.; Yamakov, V.I.; Wise, K.E.; Lowther, S.E.; Fay, C.C.; Thibeault, S.A.; Bryant, R.G. Multifunctional electroactive nanocomposites based on piezoelectric boron nitride nanotubes. ACS Nano 2015, 9, 11942–11950. [Google Scholar] [CrossRef]
- Li, L.H.; Chen, Y. Superhydrophobic properties of nonaligned boron nitride nanotube films. Langmuir 2010, 26, 5135–5140. [Google Scholar] [CrossRef]
- Lim, H.; Suh, B.L.; Kim, M.J.; Yun, H.; Kim, J.; Kim, B.J.; Jang, S.G. High-performance, recyclable ultrafiltration membranes from P4VP-assisted dispersion of flame-resistive boron nitride nanotubes. J. Membr. Sci. 2018, 551, 172–179. [Google Scholar] [CrossRef]
- Chen, X.; Wu, P.; Rousseas, M.; Okawa, D.; Gartner, Z.; Zettl, A.; Bertozzi, C.R. Boron nitride nanotubes are noncytotoxic and can be functionalized for interaction with proteins and cells. J. Am. Chem. Soc. 2009, 131, 890–891. [Google Scholar] [CrossRef]
- Hilder, T.A.; Gordon, D.; Chung, S.H. Boron nitride nanotubes selectively permeable to cations or anions. Small 2009, 5, 2870–2875. [Google Scholar] [CrossRef]
- Liu, T.; Li, Y.-L.; He, J.-Y.; Hu, Y.; Wang, C.-M.; Zhang, K.-S.; Huang, X.-J.; Kong, L.-T.; Liu, J.-H. Porous boron nitride nanoribbons with large width as superior adsorbents for rapid removal of cadmium and copper ions from water. New J. Chem. 2019, 43, 3280–3290. [Google Scholar] [CrossRef]
- Tang, S.; Zhou, X.; Zhang, S.; Li, X.; Yang, T.; Hu, W.; Jiang, J.; Luo, Y. Metal-free boron nitride nanoribbon catalysts for electrochemical CO2 reduction: Combining high activity and selectivity. ACS Appl. Mater. Interfaces 2018, 11, 906–915. [Google Scholar] [CrossRef]
- Fan, G.; Wang, Q.; Liu, X.; Li, C.; Xu, H. Computational screening of bifunctional single atom electrocatalyst based on boron nitride nanoribbon for water splitting. Appl. Catal. A Gen. 2021, 622, 118235. [Google Scholar] [CrossRef]
- Srivastava, P.; Sharma, V.; Jaiswal, N.K. Adsorption of COCl2 gas molecule on armchair boron nitride nanoribbons for nano sensor applications. Microelectron. Eng. 2015, 146, 62–67. [Google Scholar] [CrossRef]
- Yao, Q.; Feng, Y.; Rong, M.; He, S.; Chen, X. Determination of nickel (II) via quenching of the fluorescence of boron nitride quantum dots. Microchim. Acta 2017, 184, 4217–4223. [Google Scholar] [CrossRef]
- Xue, Q.; Zhang, H.; Zhu, M.; Wang, Z.; Pei, Z.; Huang, Y.; Huang, Y.; Song, X.; Zeng, H.; Zhi, C. Hydrothermal synthesis of blue-fluorescent monolayer BN and BCNO quantum dots for bio-imaging probes. RSC Adv. 2016, 6, 79090–79094. [Google Scholar] [CrossRef]
- Yola, M.L.; Atar, N. Development of cardiac troponin-I biosensor based on boron nitride quantum dots including molecularly imprinted polymer. Biosens. Bioelectron. 2019, 126, 418–424. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, C.; Huang, D.; Zeng, G.; Huang, J.; Lai, C.; Zhou, C.; Wang, W.; Guo, H.; Xue, W. Boron nitride quantum dots decorated ultrathin porous g-C3N4: Intensified exciton dissociation and charge transfer for promoting visible-light-driven molecular oxygen activation. Appl. Catal. B Environ. 2019, 245, 87–99. [Google Scholar] [CrossRef]
- Lei, Z.; Xu, S.; Wan, J.; Wu, P. Facile preparation and multifunctional applications of boron nitride quantum dots. Nanoscale 2015, 7, 18902–18907. [Google Scholar] [CrossRef]
- Fan, L.; Zhou, Y.; He, M.; Tong, Y.; Zhong, X.; Fang, J.; Bu, X. Facile microwave approach to controllable boron nitride quantum dots. J. Mater. Sci. 2017, 52, 13522–13532. [Google Scholar] [CrossRef]
- Umrao, S.; Maurya, A.; Shukla, V.; Grigoriev, A.; Ahuja, R.; Vinayak, M.; Srivastava, R.; Saxena, P.; Oh, I.-K.; Srivastava, A. Anticarcinogenic activity of blue fluorescent hexagonal boron nitride quantum dots: As an effective enhancer for DNA cleavage activity of anticancer drug doxorubicin. Mater. Today Bio 2019, 1, 100001. [Google Scholar] [CrossRef]
- Radhakrishnan, S.; Park, J.H.; Neupane, R.; de los Reyes, C.A.; Sudeep, P.M.; Paulose, M.; Martí, A.A.; Tiwary, C.S.; Khabashesku, V.N.; Varghese, O.K. Fluorinated boron nitride quantum dots: A new 0D material for energy conversion and detection of cellular metabolism. Part. Part. Syst. Charact. 2019, 36, 1800346. [Google Scholar] [CrossRef]
- Yu, R.; Yuan, X. Rising of boron nitride: A review on boron nitride nanosheets enhanced anti-corrosion coatings. Prog. Org. Coat. 2024, 186, 107990. [Google Scholar] [CrossRef]
- Zhao, S.; Zhou, F.; Li, Z.; Liu, H. Effect of precursor purity and flow rate on the CVD growth of hexagonal boron nitride. J. Alloys Compd. 2016, 688, 1006–1012. [Google Scholar] [CrossRef]
- Verma, C.; Dubey, S.; Barsoum, I.; Alfantazi, A.; Ebenso, E.E.; Quraishi, M. Hexagonal boron nitride as a cutting-edge 2D material for additive application in anticorrosive coatings: Recent progress, challenges and opportunities. Mater. Today Commun. 2023, 35, 106367. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.-e.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Jiang, D.; Schedin, F.; Booth, T.; Khotkevich, V.; Morozov, S.; Geim, A.K. Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA 2005, 102, 10451–10453. [Google Scholar] [CrossRef]
- Lei, W.; Mochalin, V.N.; Liu, D.; Qin, S.; Gogotsi, Y.; Chen, Y. Boron nitride colloidal solutions, ultralight aerogels and freestanding membranes through one-step exfoliation and functionalization. Nat. Commun. 2015, 6, 8849. [Google Scholar] [CrossRef]
- Han, W.-Q.; Wu, L.; Zhu, Y.; Watanabe, K.; Taniguchi, T. Structure of chemically derived mono-and few-atomic-layer boron nitride sheets. Appl. Phys. Lett. 2008, 93, 223103. [Google Scholar] [CrossRef]
- Cheng, Z.-l.; Ma, Z.-s.; Ding, H.-l.; Liu, Z. Environmentally friendly, scalable exfoliation for few-layered hexagonal boron nitride nanosheets (BNNSs) by multi-time thermal expansion based on released gases. J. Mater. Chem. C 2019, 7, 14701–14708. [Google Scholar] [CrossRef]
- Zhao, G.; Zhang, F.; Wu, Y.; Hao, X.; Wang, Z.; Xu, X. One-step exfoliation and hydroxylation of boron nitride nanosheets with enhanced optical limiting performance. Adv. Opt. Mater. 2016, 4, 141–146. [Google Scholar] [CrossRef]
- Zheng, Z.; Cox, M.; Li, B. Surface modification of hexagonal boron nitride nanomaterials: A review. J. Mater. Sci. 2018, 53, 66–99. [Google Scholar] [CrossRef]
- Zhou, C.; Lai, C.; Zhang, C.; Zeng, G.; Huang, D.; Cheng, M.; Hu, L.; Xiong, W.; Chen, M.; Wang, J. Semiconductor/boron nitride composites: Synthesis, properties, and photocatalysis applications. Appl. Catal. B Environ. 2018, 238, 6–18. [Google Scholar] [CrossRef]
- Yu, S.; Wang, X.; Pang, H.; Zhang, R.; Song, W.; Fu, D.; Hayat, T.; Wang, X. Boron nitride-based materials for the removal of pollutants from aqueous solutions: A review. Chem. Eng. J. 2018, 333, 343–360. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, J.; Xiao, X.; Wang, N.; Meng, G.; Gu, L. Graphene-like two-dimensional nanosheets-based anticorrosive coatings: A review. J. Mater. Sci. Technol. 2022, 129, 139–162. [Google Scholar] [CrossRef]
- Sun, J.; Lu, C.; Song, Y.; Ji, Q.; Song, X.; Li, Q.; Zhang, Y.; Zhang, L.; Kong, J.; Liu, Z. Recent progress in the tailored growth of two-dimensional hexagonal boron nitride via chemical vapour deposition. Chem. Soc. Rev. 2018, 47, 4242–4257. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Gong, Y.; Zhou, W.; Ma, L.; Yu, J.; Idrobo, J.C.; Jung, J.; MacDonald, A.H.; Vajtai, R.; Lou, J. Ultrathin high-temperature oxidation-resistant coatings of hexagonal boron nitride. Nat. Commun. 2013, 4, 2541. [Google Scholar] [CrossRef] [PubMed]
- Saji, V.S. Electrophoretic (EPD) coatings for magnesium alloys. J. Ind. Eng. Chem. 2021, 103, 358–372. [Google Scholar] [CrossRef]
- Raza, M.A.; Nadeem, A.; Ilyas, M.T. Corrosion Study of Boron Nitride Nanosheets Deposited on Copper Metal by Electrophoretic Deposition. In TMS 2019 148th Annual Meeting & Exhibition Supplemental Proceedings; Springer: Cham, Switzerland, 2019. [Google Scholar]
- Nadeem, A.; Raza, M. Corrosion Study of Boron Nitride Nanosheets Deposited on Copper Metal by Electrophoretic Deposition. J. Pak. Inst. Chem. Eng. 2021, 49, 85–93. [Google Scholar]
- Gonzalez Ortiz, D.; Pochat-Bohatier, C.; Cambedouzou, J.; Bechelany, M.; Miele, P. Exfoliation of hexagonal boron nitride (h-BN) in liquide phase by ion intercalation. Nanomaterials 2018, 8, 716. [Google Scholar] [CrossRef]
- Liu, M.; Yang, Y.; Mao, Q.; Wei, Y.; Li, Y.; Ma, N.; Liu, H.; Liu, X.; Huang, Z. Influence of radio frequency magnetron sputtering parameters on the structure and performance of SiC films. Ceram. Int. 2021, 47, 24098–24105. [Google Scholar] [CrossRef]
- Wu, Y.; Liu, J.; Cao, H.; Wu, Z.; Wang, Q.; Ma, Y.; Jiang, H.; Wen, F.; Pei, Y. On the adhesion and wear resistance of DLC films deposited on nitrile butadiene rubber: A Ti-C interlayer. Diam. Relat. Mater. 2020, 101, 107563. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, Q.; Chen, R.; Zhang, H.; Wang, M.; Zhu, J.; Wang, X.; Liu, Y.; Yun, F. Wafer− Scale Growth of Fe− Doped Hexagonal Boron Nitride (hBN) Films via Co− Sputtering. Crystals 2022, 12, 777. [Google Scholar] [CrossRef]
- Li, L.H.; Xing, T.; Chen, Y.; Jones, R. Boron nitride nanosheets for metal protection. Adv. Mater. Interfaces 2014, 1, 1300132. [Google Scholar] [CrossRef]
- Li, L.; Li, L.H.; Chen, Y.; Dai, X.J.; Lamb, P.R.; Cheng, B.M.; Lin, M.Y.; Liu, X. High-quality boron nitride nanoribbons: Unzipping during nanotube synthesis. Angew. Chem. 2013, 125, 4306–4310. [Google Scholar] [CrossRef]
- Kubota, Y.; Watanabe, K.; Tsuda, O.; Taniguchi, T. Deep ultraviolet light-emitting hexagonal boron nitride synthesized at atmospheric pressure. Science 2007, 317, 932–934. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, L.; Xia, Z.; Roy, A.; Chang, D.W.; Baek, J.B.; Dai, L. BCN graphene as efficient metal-free electrocatalyst for the oxygen reduction reaction. Angew. Chem. Int. Ed. 2012, 51, 4209. [Google Scholar] [CrossRef]
- Zheng, Y.; Jiao, Y.; Ge, L.; Jaroniec, M.; Qiao, S.Z. Two-step boron and nitrogen doping in graphene for enhanced synergistic catalysis. Angew. Chem. Int. Ed. 2013, 52, 3110–3116. [Google Scholar] [CrossRef]
- Khan, M.H.; Jamali, S.S.; Lyalin, A.; Molino, P.J.; Jiang, L.; Liu, H.-K.; Taketsugu, T.; Huang, Z. Atomically thin hexagonal boron nitride nanofilm for Cu protection: The importance of film perfection. Adv. Mater. 2017, 29, 1603937. [Google Scholar] [CrossRef]
- Khan, M.H.; Huang, Z.; Xiao, F.; Casillas, G.; Chen, Z.; Molino, P.J.; Liu, H.K. Synthesis of large and few atomic layers of hexagonal boron nitride on melted copper. Sci. Rep. 2015, 5, 7743. [Google Scholar] [CrossRef]
- Zhou, F.; Li, Z.; Shenoy, G.J.; Li, L.; Liu, H. Enhanced room-temperature corrosion of copper in the presence of graphene. Acs Nano 2013, 7, 6939–6947. [Google Scholar] [CrossRef]
- Niaura, G. Surface-enhanced Raman spectroscopic observation of two kinds of adsorbed OH− ions at copper electrode. Electrochim. Acta 2000, 45, 3507–3519. [Google Scholar] [CrossRef]
- Prasai, D.; Tuberquia, J.C.; Harl, R.R.; Jennings, G.K.; Bolotin, K.I. Graphene: Corrosion-inhibiting coating. ACS Nano 2012, 6, 1102–1108. [Google Scholar] [CrossRef] [PubMed]
- Huh, J.-H.; Kim, S.H.; Chu, J.H.; Kim, S.Y.; Kim, J.H.; Kwon, S.-Y. Enhancement of seawater corrosion resistance in copper using acetone-derived graphene coating. Nanoscale 2014, 6, 4379–4386. [Google Scholar] [CrossRef] [PubMed]
- Ren, S.; Cui, M.; Pu, J.; Xue, Q.; Wang, L. Multilayer regulation of atomic boron nitride films to improve oxidation and corrosion resistance of Cu. ACS Appl. Mater. Interfaces 2017, 9, 27152–27165. [Google Scholar] [CrossRef]
- Shen, L.; Zhao, Y.; Wang, Y.; Song, R.; Yao, Q.; Chen, S.; Chai, Y. A long-term corrosion barrier with an insulating boron nitride monolayer. J. Mater. Chem. A 2016, 4, 5044–5050. [Google Scholar] [CrossRef]
- Poulston, S.; Parlett, P.; Stone, P.; Bowker, M. Surface oxidation and reduction of CuO and Cu2O studied using XPS and XAES. Surf. Interface Anal. Int. J. Devoted Dev. Appl. Tech. Anal. Surf. Interfaces Thin Film. 1996, 24, 811–820. [Google Scholar] [CrossRef]
- Nadeem, A.; Maqsood, M.F.; Raza, M.A.; Ilyas, M.T.; Iqbal, M.J.; Rehman, Z.U. Binder free boron nitride-based coatings deposited on mild steel by chemical vapour deposition: Anti-corrosion performance analysis. Phys. B Condens. Matter 2021, 602, 412600. [Google Scholar] [CrossRef]
- Pakdel, A.; Zhi, C.; Bando, Y.; Golberg, D. Low-dimensional boron nitride nanomaterials. Mater. Today 2012, 15, 256–265. [Google Scholar] [CrossRef]
- Cui, Z.; Oyer, A.J.; Glover, A.J.; Schniepp, H.C.; Adamson, D.H. Large scale thermal exfoliation and functionalization of boron nitride. Small 2014, 10, 2352–2355. [Google Scholar] [CrossRef]
- Posudievsky, O.Y.; Khazieieva, O.A.; Cherepanov, V.V.; Dovbeshko, G.I.; Koshechko, V.G.; Pokhodenko, V.D. Efficient dispersant-free liquid exfoliation down to the graphene-like state of solvent-free mechanochemically delaminated bulk hexagonal boron nitride. RSC Adv. 2016, 6, 47112–47119. [Google Scholar] [CrossRef]
- Li, X.; Hao, X.; Zhao, M.; Wu, Y.; Yang, J.; Tian, Y.; Qian, G. Exfoliation of hexagonal boron nitride by molten hydroxides. Adv. Mater. 2013, 25, 2200–2204. [Google Scholar] [CrossRef] [PubMed]
- Sherif, E.; Park, S.-M. Inhibition of copper corrosion in 3.0% NaCl solution by N-phenyl-1, 4-phenylenediamine. J. Electrochem. Soc. 2005, 152, B428. [Google Scholar] [CrossRef]
- Wu, Y.; He, Y.; Zhou, T.; Chen, C.; Zhong, F.; Xia, Y.; Xie, P.; Zhang, C. Synergistic functionalization of h-BN by mechanical exfoliation and PEI chemical modification for enhancing the corrosion resistance of waterborne epoxy coating. Prog. Org. Coat. 2020, 142, 105541. [Google Scholar] [CrossRef]
- Tang, X.; Wang, H.; Liu, C.; Zhu, X.; Gao, W.; Yin, H. Direct growth of hexagonal boron nitride nanofilms on stainless steel for corrosion protection. ACS Appl. Nano Mater. 2021, 4, 12024–12033. [Google Scholar] [CrossRef]
- Palai, D.; Bhattacharya, M.; Mallick, A.B.; Bera, P.; Sharma, A.K.; Mukhopadhyay, A.K.; Dey, A. Microstructural, thermo-optical, mechanical and tribological behaviours of vacuum heat treated ultra thin SS304 foils. Mater. Res. Express 2016, 3, 096501. [Google Scholar] [CrossRef]
- Chen, Z.-G.; Zou, J.; Liu, G.; Li, F.; Wang, Y.; Wang, L.; Yuan, X.-L.; Sekiguchi, T.; Cheng, H.-M.; Lu, G.Q. Novel boron nitride hollow nanoribbons. Acs Nano 2008, 2, 2183–2191. [Google Scholar] [CrossRef]
- Borowiak-Palen, E.; Pichler, T.; Fuentes, G.G.; Bendjemil, B.; Liu, X.; Graff, A.; Behr, G.; Kalenczuk, R.J.; Knupfer, M.; Fink, J. Infrared response of multiwalled boron nitride nanotubes. Chem. Commun. 2003, 1, 82–83. [Google Scholar] [CrossRef]
- Gao, M.; Meng, J.; Chen, Y.; Ye, S.; Wang, Y.; Ding, C.; Li, Y.; Yin, Z.; Zeng, X.; You, J. Catalyst-free growth of two-dimensional hexagonal boron nitride few-layers on sapphire for deep ultraviolet photodetectors. J. Mater. Chem. C 2019, 7, 14999–15006. [Google Scholar] [CrossRef]
- Chen, T.-A.; Chuu, C.-P.; Tseng, C.-C.; Wen, C.-K.; Wong, H.-S.P.; Pan, S.; Li, R.; Chao, T.-A.; Chueh, W.-C.; Zhang, Y. Wafer-scale single-crystal hexagonal boron nitride monolayers on Cu (111). Nature 2020, 579, 219–223. [Google Scholar] [CrossRef]
- Liu, J.; Kutty, R.G.; Zheng, Q.; Eswariah, V.; Sreejith, S.; Liu, Z. Hexagonal Boron Nitride Nanosheets as High-Performance Binder-Free Fire-Resistant Wood Coatings. 2016. Available online: https://hdl.handle.net/10356/85139 (accessed on 3 December 2023).
- Geick, R.; Perry, C.; Rupprecht, G. Normal modes in hexagonal boron nitride. Phys. Rev. 1966, 146, 543. [Google Scholar] [CrossRef]
- Du, M.; Wu, Y.; Hao, X. A facile chemical exfoliation method to obtain large size boron nitride nanosheets. CrystEngComm 2013, 15, 1782–1786. [Google Scholar] [CrossRef]
- Mehdi, S.M.Z.; Maqsood, M.F.; Dahshan, A.; Ahmad, S.; Ur Rehman, M.; Lee, N.; Rehman, M.A.; Khan, M.F. Emerging boron nitride nanosheets: A review on synthesis, corrosion resistance coatings, and their impacts on the environment and health. Rev. Adv. Mater. Sci. 2024, 63, 20240075. [Google Scholar] [CrossRef]
- OpenAI. GPT-3.5; OpenAI: San Francisco, CA, USA, 2023; Available online: https://chat.openai.com/ (accessed on 18 November 2024).
Types of h-BN | Type of Hybridization | Electrical Conductivity | Thermal Conductivity | Applications | Ref. |
---|---|---|---|---|---|
Cubic BN (c-BN) | Sp3 | Insulator | ~1300 W/mK | For cutting tools, insulating material in electronics, protective coatings, thermocouple protection sheaths, crucibles, protective lining for reaction vessels, ultraviolet (UV) detectors, and UV-light-emitting diodes. | [32,37,38,39,40] |
Wurtzite BN (w-BN) | Sp3 | Insulator | 100–300 W/mK | Machining/cutting/milling ferrous and carbide materials; Optoelectronics devices; dielectric substrate material for optical, electronic, and 2D graphene-based devices; short wavelength electro-luminescent optics; and high-temperature microelectronics, transparent coatings, energy storage devices, optical sensors, thermal management systems, and durable structural components. | [32,37,41,42,43,44] |
Hexagonal BN (h-BN) | Sp2 | 10−13 to 10−14 S/m | 390–2000 W/mK | Adsorption nanomaterials, photocatalysis, membrane separation, antibiosis, environmental sensing, energy conversion and storage, and toxicity analysis. | [32,37,45,46,47,48,49,50,51,52,53] |
Rhomohedral BN (r-BN) | Sp2 | Insulator | 20–300 W/mK | Cutting tools and abrasives, coating and mold release, electrical insulation, and thermal spray. | [32,37,46] |
BN nanotubes (BNNTs) | Sp2 | Insulator, could be a semiconductor under specific conditions | ~350 W/mK | Polymer coating reinforcement, thermal management packages, piezo actuators, neutron shielding nanomaterials, self-cleaning membranes, reusable heat resistive films, biological probes, and biological channels in biosensing. | [32,37,54,55,56,57,58,59,60,61] |
BN nanoribbons | Sp2 | Insulator | 100–400 W/mK | Adsorption, CO2 reduction, water splitting, and environmental sensing. | [32,37,62,63,64,65] |
BN quantum dots (BNQDs) | Sp2 | ~10−6 to 10−15 S/m | 0.3–1.5 nW/K | On–off probes, bioimaging, electrochemical biosensing, photocatalytic activator, proton exchange membranes, microwave absorption material, DNA cleavage activity, and detection of cancer cells. | [32,37,66,67,68,69,70,71,72,73] |
Methods Involved to Obtain BNNSs | Properties of BNNSs Obtained | Ref. |
---|---|---|
CVD |
| [13,86,87,88] |
Electrophoretic deposition |
| [89,90,91] |
Liquid phase exfoliation method |
| [23,86,92] |
Magnetron sputtering |
| [93,94,95] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maqsood, M.F.; Mehdi, S.M.Z.; Ashraf, A.; Azhar, U.; Abbas, N.; Raza, M.A.; Amer, M. Binder-Free Hexagonal Boron Nitride Nanosheets (BNNSs) as Protective Coatings for Copper, Steel, and Wood: A Review. Crystals 2025, 15, 99. https://doi.org/10.3390/cryst15010099
Maqsood MF, Mehdi SMZ, Ashraf A, Azhar U, Abbas N, Raza MA, Amer M. Binder-Free Hexagonal Boron Nitride Nanosheets (BNNSs) as Protective Coatings for Copper, Steel, and Wood: A Review. Crystals. 2025; 15(1):99. https://doi.org/10.3390/cryst15010099
Chicago/Turabian StyleMaqsood, Muhammad Faheem, Syed Muhammad Zain Mehdi, Arslan Ashraf, Umair Azhar, Naseem Abbas, Muhammad Asim Raza, and Mohammed Amer. 2025. "Binder-Free Hexagonal Boron Nitride Nanosheets (BNNSs) as Protective Coatings for Copper, Steel, and Wood: A Review" Crystals 15, no. 1: 99. https://doi.org/10.3390/cryst15010099
APA StyleMaqsood, M. F., Mehdi, S. M. Z., Ashraf, A., Azhar, U., Abbas, N., Raza, M. A., & Amer, M. (2025). Binder-Free Hexagonal Boron Nitride Nanosheets (BNNSs) as Protective Coatings for Copper, Steel, and Wood: A Review. Crystals, 15(1), 99. https://doi.org/10.3390/cryst15010099