Fabrication of Novel ZIF-8@BiVO4 Composite with Enhanced Photocatalytic Performance
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Synthesis of BVO
2.3. Synthesis of ZIF-8@BVO Composite
2.4. Characterization
2.5. Analysis of *OH Radical
2.6. Photocatalytic Experiment
3. Results and Discussion
3.1. Phase Structure and Morphology
3.2. Analysis of *OH Radical
3.3. Photocatalytic Performance
3.4. Proposed Mechanism for the Enhanced Photocatalytic Performance
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hoffmann, M.R.; Martin, S.T.; Choi, E.; Bahnemann, D.W. Environmental applications of semiconductor photocatalysis. Chem. Rev. 1995, 95, 69–96. [Google Scholar] [CrossRef]
- Bai, X.; Wang, L.; Zong, R.; Zhu, Y. Photocatalytic activity enhanced via g-C3N4 nanoplates to nanorods. J. Phys. Chem. C 2013, 117, 9952–9961. [Google Scholar] [CrossRef]
- Choi, J.; Park, H.; Hoffmann, M. Effects of single metal-ion doping on the visible-light photoreactivity of TiO2. J. Phys. Chem. C 2010, 114, 783–792. [Google Scholar] [CrossRef]
- Si, Y.H.; Xia, Y.; Shang, S.K.; Xiong, X.B.; Zeng, X.R.; Zhou, J.; Li, Y.Y. Enhanced visible light driven photocatalytic behavior of BiFeO3/reduced graphene oxide composites. Nanomaterials 2018, 8, 526. [Google Scholar] [CrossRef] [PubMed]
- Si, Y.H.; Xia, Y.; Li, Y.Y.; Shang, S.K.; Xiong, X.B.; Zeng, X.R.; Zhou, J. Enhanced visible-active photocatalytic behaviours observed in Mn-doped BiFeO3. Mod. Phys. Lett. B 2018, 32, 1850185. [Google Scholar] [CrossRef]
- Jia, T.K.; Li, J.L.; Long, F.; Zhao, J.W.; Deng, Z.; Wang, X.H.; Zhang, Y. Ultrathin g-C3N4 nanosheet-modified BiOCl hierarchical flower-like plate heterostructure with enhanced photostability and photocatalytic performance. Crystals 2017, 7, 266. [Google Scholar] [CrossRef]
- Guo, M.N.; He, Q.L.; Wang, A.Y.; Wang, W.M.; Fu, Z.Y. A novel, simple and green way to fabricate BiVO4 with excellent photocatalytic activity and its methylene blue decomposition mechanism. Crystals 2016, 6, 81. [Google Scholar] [CrossRef]
- Yu, J.Q.; Kudo, A. Effects of structural variation on the photocatalytic performance of hydrothermally synthesized BiVO4. Adv. Funct. Mater. 2010, 16, 2163–2169. [Google Scholar] [CrossRef]
- Dong, S.Y.; Feng, J.L.; Li, Y.K.; Hu, L.M.; Liu, M.L.; Wang, Y.F.; Pi, Y.Q.; Sun, J.Y.; Sun, J.H. Shape-controlled synthesis of BiVO4 hierarchical structures with unique natural-sunlight-driven photocatalytic activity. Appl. Catal. B Environ. 2014, 152–153, 413–424. [Google Scholar] [CrossRef]
- Ho-Kimura, S.; Moniz, S.J.A.; Handoko, A.D.; Tang, J.W. Enhanced photoelectrochemical water splitting by nanostructured BiVO4-TiO2 composite electrodes. J. Mater. Chem. A 2014, 2, 3948–3953. [Google Scholar] [CrossRef]
- Jo, W.J.; Jang, J.W.; Kong, K.; Kang, H.J.; Kim, J.Y.; Jun, H.; Parmar, K.P.S.; Lee, J.S. Phosphate doping into monoclinic BiVO4 for enhanced photoelectrochemical water oxidation activity. Angew. Chem. Int. Ed. 2012, 51, 3147–3151. [Google Scholar] [CrossRef] [PubMed]
- Regmi, C.; Dhakal, D.; Lee, S.W. Visible-light-induced Ag/BiVO4 semiconductor with enhanced photocatalytic and antibacterial performance. Nanotechnology 2017, 29, 1416–1426. [Google Scholar] [CrossRef] [PubMed]
- Appavu, B.; Thiripuranthagan, S.; Ranganathan, S.; Erusappan, E.; Kannal, K. BiVO4/N-rGO nano composites as highly efficient visible active photocatalyst for the degradation of dyes and antibiotics in eco system. Ecotoxicol. Environ. Saf. 2018, 151, 118–126. [Google Scholar] [CrossRef] [PubMed]
- Xuan, W.; Zhu, C.; Liu, Y.; Cui, Y. Mesoporous metal-organic framework materials. Chem. Soc. Rev. 2012, 41, 1677–1695. [Google Scholar] [CrossRef] [PubMed]
- Furukawa, H.; Ko, N.; Go, Y.B.; Aratani, N.; Choi, S.B.; Choi, E.; Yazaydin, A.O.; Snurr, R.Q.; O’Keeffe, M.; Kim, J.; et al. Ultrahigh porosity in metal-organic frameworks. Science 2010, 329, 424–428. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Xie, Z.G.; deKrafft, K.E.; Lin, W.L. Doping metal-organic frameworks for water oxidation, carbon dioxide reduction, and organic photocatalysis. J. Am. Chem. Soc. 2011, 133, 13445–13454. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.L.; Wang, C.; Lin, W.B. Metal-organic frameworks for light harvesting and photocatalysis. ACS Catal. 2012, 2, 2630–2640. [Google Scholar] [CrossRef]
- Li, B.; Wen, H.M.; Cui, Y.J.; Zhou, W.; Qian, G.D.; Chen, B.L. Emerging multifunctional metal-organic framework materials. Adv. Mater. 2016, 28, 8819–8860. [Google Scholar] [CrossRef] [PubMed]
- Du, X.D.; Yi, X.H.; Wang, P.; Zheng, W.W.; Deng, J.G.; Wang, C.C. Robust photocatalytic reduction of Cr(VI) on UiO-66-NH2(Zr/Hf) metal-organic framework membrane under sunlight irradiation. Chem. Eng. J. 2019, 356, 393–399. [Google Scholar] [CrossRef]
- Samuel, M.S.; Bhattacharya, J.; Parthiban, C.; Viswanathan, G.; Singh, N.D.P. Ultrasound-assisted synthesis of metal organic framework for the photocatalytic reduction of 4-nitrophenol under direct sunlight. Ultrason. Sonochem. 2018, 49, 215–221. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Kim, J.; Ahn, W. Synthesis of metal-organic frameworks: A mini review. Korean J. Chem. Eng. 2013, 30, 1667–1680. [Google Scholar] [CrossRef]
- Nguyen, L.T.L.; Le, K.K.A.; Phan, N.T.S. A zeolite imidazolate framework ZIF-8 catalyst for friedel-crafts acylation. Chin. J. Catal. 2012, 33, 688–696. [Google Scholar] [CrossRef]
- Lu, G.; Hupp, J.T. Metal-organic frameworks as sensors: A ZIF-8 based Fabry-Pérot device as a selective sensor for chemical vapors and gases. J. Am. Chem. Soc. 2010, 132, 7832. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.L.; Zhang, W.J.; Liu, D.H.; Liu, B.; Chen, G.J.; Zhong, C.L. Effect of temperature on gas adsorption and separation in ZIF-8: A combined experimental and molecular simulation study. Chem. Eng. Sci. 2011, 66, 6297–6305. [Google Scholar] [CrossRef]
- Park, K.S.; Ni, Z.N.; Cote, A.P.; Choi, J.Y.; Huang, R.; Uribe-Romo, F.J. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl. Acad. Sci. USA 2006, 103, 10186–10191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, L.; Chen, D.R.; Jiao, X.L. Monoclinic structured BiVO4 nanosheets: Hydrothermal preparation, formation mechanism, and coloristic and photocatalytic properties. J. Phys. Chem. B 2006, 110, 2668–2673. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Lainez, J.; Zornoza, B.; Friebe, S.; Caro, J.; Cao, S.; Sabetghadam, A.; Seoane, B.; Gascon, J.; Kapteijn, F.; Le Guillouzer, C.; et al. Influence of ZIF-8 particle size in the performance of polybenzimidazole mixed matrix membranes for pre-combustion CO2 capture and its validation through interlaboratory test. J. Membr. Sci. 2016, 515, 45–53. [Google Scholar] [CrossRef]
- Zhang, L.J.; Li, S.; Liu, B.K.; Wang, D.J.; Xie, T.F. Highly Efficient CdS/WO3 photocatalysts: Z-scheme photocatalytic mechanism for their enhanced photocatalytic H2 evolution under visible light. ACS Catal. 2014, 4, 3724–3729. [Google Scholar] [CrossRef]
- Ma, D.D.; Shi, J.W.; Zou, Y.J.; Fan, Z.Y.; J, X.; Niu, C.M. Highly efficient photocatalyst based on a CdS quantum dots/ZnO nanosheets 0D/2D heterojunction for hydrogen evolution from water splitting. ACS Appl. Mater. Interfaces 2017, 9, 25377–25386. [Google Scholar] [CrossRef] [PubMed]
- Li, J.H.; Bai, J.; Niu, X.H.; Li, X.Y.; Chen, S.; Wang, J.C.; Zhou, B.X. Dramatic enhancement of photocurrent for BiVO4/TiO2 heterojunction photoanode with suitable band-match via in-situ band regulation using Ta. Int. J. Hydrogen Energy 2018, 43, 18202–18210. [Google Scholar] [CrossRef]
- Chin, M.; Cisneros, C.; Araiza, S.M.; Vargas, K.M.; Ishihara, K.M.; Tian, F.Y. Rhodamine B degradation by nanosized zeolitic imidazolate framework-8 (ZIF-8). RSC Adv. 2018, 8, 26987–26997. [Google Scholar] [CrossRef] [PubMed]
- Zhou, P.; Yu, J.G.; Jaroniec, M. All-solid-state Z-scheme photocatalytic systems. Adv. Mater. 2014, 26, 4920–4935. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.X.; Liu, G.M.; Zhao, J.C.; Hidaka, H.; Serpone, N. Photoassisted degradation of dye pollutants. V. self-photosensitized oxidative transformation of rhodamine B under visible light irradiation in aqueous TiO2 dispersions. J. Phys. Chem. B 1998, 102, 5845–5851. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Si, Y.-h.; Li, Y.-y.; Xia, Y.; Shang, S.-k.; Xiong, X.-b.; Zeng, X.-r.; Zhou, J. Fabrication of Novel ZIF-8@BiVO4 Composite with Enhanced Photocatalytic Performance. Crystals 2018, 8, 432. https://doi.org/10.3390/cryst8110432
Si Y-h, Li Y-y, Xia Y, Shang S-k, Xiong X-b, Zeng X-r, Zhou J. Fabrication of Novel ZIF-8@BiVO4 Composite with Enhanced Photocatalytic Performance. Crystals. 2018; 8(11):432. https://doi.org/10.3390/cryst8110432
Chicago/Turabian StyleSi, Yun-hui, Ya-yun Li, Yu Xia, Shao-ke Shang, Xin-bo Xiong, Xie-rong Zeng, and Ji Zhou. 2018. "Fabrication of Novel ZIF-8@BiVO4 Composite with Enhanced Photocatalytic Performance" Crystals 8, no. 11: 432. https://doi.org/10.3390/cryst8110432
APA StyleSi, Y. -h., Li, Y. -y., Xia, Y., Shang, S. -k., Xiong, X. -b., Zeng, X. -r., & Zhou, J. (2018). Fabrication of Novel ZIF-8@BiVO4 Composite with Enhanced Photocatalytic Performance. Crystals, 8(11), 432. https://doi.org/10.3390/cryst8110432