Bending Nanoindentation and Plasticity Noise in FCC Single and Polycrystals
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kese, K.O.; Li, Z.C.; Bergman, B. Influence of residual stress on elastic modulus and hardness of soda-lime glass measured by nanoindentation. J. Mater. Res. 2004, 19, 3109–3119. [Google Scholar] [CrossRef]
- Zhou, X.; Jiang, Z.; Wang, H.; Yu, R. Investigation on methods for dealing with pile-up errors in evaluating the mechanical properties of thin metal films at sub-micron scale on hard substrates by nanoindentation technique. Mater. Sci. Eng. A 2008, 488, 318–332. [Google Scholar] [CrossRef]
- Bufford, D.; Liu, Y.; Wang, J.; Wang, H.; Zhang, X. In situ nanoindentation study on plasticity and work hardening in aluminium with incoherent twin boundaries. Nat. Commun. 2014, 5, 4864. [Google Scholar] [CrossRef] [PubMed]
- Schuh, C.A.; Lund, A.C. Application of nucleation theory to the rate dependence of incipient plasticity during nanoindentation. J. Mater. Res. 2004, 19, 2152–2158. [Google Scholar] [CrossRef]
- Wang, L.; Bei, H.; Gao, Y.F.; Lu, Z.P.; Nieh, T.G. Effect of residual stresses on the hardness of bulk metallic glasses. Acta Mater. 2011, 59, 2858–2864. [Google Scholar] [CrossRef]
- Uchic, M.D.; Dimiduk, D.M.; Florando, J.N.; Nix, W.D. Sample dimensions influence strength and crystal plasticity. Science 2004, 305, 986–989. [Google Scholar] [CrossRef]
- Voyiadjis, G.Z.; Yaghoobi, M. Chapter 1—Introduction: Size Effects in Materials 2019, in Size Effects in Plasticity; Academic Press: Cambridge, MA, USA, 2019; pp. 1–79. [Google Scholar]
- Voyiadjis, G.Z.; Yaghoobi, M. Size Effects during Nanoindentation: Molecular Dynamics Simulation. In Handbook of Nonlocal Continuum Mechanics for Materials and Structures; Springer International Publishing AG: Cham, Switzerland, 2019; pp. 39–76. [Google Scholar]
- Suresh, S.; Giannakopoulos, A.E. A new method for estimating residual stresses by instrumented sharp indentation. Acta Mater. 1998, 46, 5755–5767. [Google Scholar] [CrossRef]
- Giannakopoulos, A.E.; Suresh, S. Determination of elastoplastic properties by instrumented sharp indentation. Scr. Mater. 1999, 40, 1191–1198. [Google Scholar] [CrossRef]
- Bolshakov, A.P.G.M.; Pharr, G.M. Influences of pileup on the measurement of mechanical properties by load and depth sensing indentation techniques. J. Mater. Res. 1998, 13, 1049–1058. [Google Scholar] [CrossRef]
- Chen, X.; Yan, J.; Karlsson, A.M. On the determination of residual stress and mechanical properties by indentation. Mater. Sci. Eng. A 2006, 416, 139–149. [Google Scholar] [CrossRef]
- Voyiadjis, G.Z.; Peters, R. Size effects in nanoindentation: An experimental and analytical study. Acta Mech. 2010, 211, 131–153. [Google Scholar] [CrossRef]
- Yang, R.; Zhang, Q.; Xiao, P.; Wang, J.; Bai, Y. Two opposite size effects of hardness at real nano-scale and their distinct origins. Sci. Rep. 2017, 7, 16053. [Google Scholar] [CrossRef] [PubMed]
- Hou, X.D.; Jennett, N.M. A method to separate and quantify the effects of indentation size, residual stress and plastic damage when mapping properties using instrumented indentation. J. Phys. D Appl. Phys. 2017, 50, 455304. [Google Scholar] [CrossRef]
- Jarausch, K.F.; Kiely, J.D.; Houston, J.E.; Russell, P.E. Defect-dependent elasticity: Nanoindentation as a probe of stress state. J. Mater. Res. 2000, 15, 1693–1701. [Google Scholar] [CrossRef][Green Version]
- Sun, K.; Shi, J.; Ma, L. Atomistic Insights into the Effects of Residual Stress during Nanoindentation. Crystals 2017, 7, 240. [Google Scholar] [CrossRef]
- Larsson, P.L. On the influence of elastic deformation for residual stress determination by sharp indentation testing. J. Mater. Eng. Perform. 2017, 26, 3854–3860. [Google Scholar] [CrossRef]
- Khan, M.K.; Fitzpatrick, M.E.; Hainsworth, S.V.; Edwards, L. Effect of residual stress on the nanoindentation response of aerospace aluminium alloys. Comput. Mater. Sci. 2011, 50, 2967–2976. [Google Scholar] [CrossRef]
- Zhu, L.N.; Xu, B.S.; Wang, H.D.; Wang, C.B. Measurement of residual stresses using nanoindentation method. Crit. Rev. Solid State Mater. Sci. 2015, 40, 77–89. [Google Scholar] [CrossRef]
- Xu, Z.H.; Li, X. Estimation of residual stresses from elastic recovery of nanoindentation. Philos. Mag. 2006, 86, 2835–2846. [Google Scholar] [CrossRef]
- Shen, T.D.; Koch, C.C.; Tsui, T.Y.; Pharr, G.M. On the elastic moduli of nanocrystalline Fe, Cu, Ni, and Cu–Ni alloys prepared by mechanical milling/alloying. J. Mater. Res. 1995, 10, 2892–2896. [Google Scholar] [CrossRef]
- Pharr, G.M. Measurement of mechanical properties by ultra-low load indentation. Mater. Sci. Eng. A 1998, 253, 151–159. [Google Scholar] [CrossRef]
- Oliver, W.C.; Pharr, G.M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 1992, 7, 1564–1583. [Google Scholar] [CrossRef]
- Liu, Y.; Ngan, A.H.W. Depth dependence of hardness in copper single crystals measured by nanoindentation. Scr. Mater. 2001, 44, 237–241. [Google Scholar] [CrossRef]
- Durst, K.; Backes, B.; Franke, O.; Göken, M. Indentation size effect in metallic materials: Modeling strength from pop-in to macroscopic hardness using geometrically necessary dislocations. Acta Mater. 2006, 54, 2547–2555. [Google Scholar] [CrossRef]
- Oliver, W.C.; Pharr, G.M. Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 2004, 19, 3–20. [Google Scholar] [CrossRef]
- Catoor, D.; Gao, Y.F.; Geng, J.; Prasad, M.J.N.V.; Herbert, E.G.; Kumar, K.S.; Pharr, G.M.; George, E.P. Incipient plasticity and deformation mechanisms in single-crystal Mg during spherical nanoindentation. Acta Mater. 2013, 61, 2953–2965. [Google Scholar] [CrossRef]
- Lorenz, D.; Zeckzer, A.; Hilpert, U.; Grau, P.; Johansen, H.; Leipner, H.S. Pop-in effect as homogeneous nucleation of dislocations during nanoindentation. Phys. Rev. B 2003, 67, 172101. [Google Scholar] [CrossRef]
- Jiapeng, S.; Cheng, L.; Han, J.; Ma, A.; Fang, L. Nanoindentation induced deformation and pop-in events in a silicon crystal: Molecular dynamics simulation and experiment. Sci. Rep. 2017, 7, 10282. [Google Scholar] [CrossRef]
- Bei, H.; Xia, Y.Z.; Barabash, R.I.; Gao, Y.F. A tale of two mechanisms: Strain-softening versus strain-hardening in single crystals under small stressed volumes. Scr. Mater. 2016, 110, 48–52. [Google Scholar] [CrossRef]
- Voyiadjis, G.Z.; Yaghoobi, M. Review of nanoindentation size effect: Experiments and atomistic simulation. Crystals 2017, 7, 321. [Google Scholar] [CrossRef]
- Lee, Y.H.; Kwon, D. Estimation of biaxial surface stress by instrumented indentation with sharp indenters. Acta Mater. 2004, 52, 1555–1563. [Google Scholar] [CrossRef]
- Gu, Y.; Nakamura, T.; Prchlik, L.; Sampath, S.; Wallace, J. Micro-indentation and inverse analysis to characterize elastic–plastic graded materials. Mater. Sci. Eng. A 2003, 345, 223–233. [Google Scholar] [CrossRef]
- Zhu, L.N.; Xu, B.S.; Wang, H.D.; Wang, C.B. Effect of residual stress on the nanoindentation response of (100) copper single crystal. Mater. Chem. Phys. 2012, 136, 561–565. [Google Scholar] [CrossRef]
- Kucharski, S.; Jarząbek, D.; Piątkowska, A.; Woźniacka, S. Decrease of nano-hardness at ultra-low indentation depths in copper single crystal. Exp. Mech. 2016, 56, 381–393. [Google Scholar] [CrossRef]
- Feng, G.; Nix, W.D. Indentation size effect in MgO. Scr. Mater. 2004, 51, 599–603. [Google Scholar] [CrossRef]
- Bolshakov, A.; Oliver, W.C.; Pharr, G.M. Influences of stress on the measurement of mechanical properties using nanoindentation: Part II. Finite element simulations. J. Mater. Res. 1996, 11, 760–768. [Google Scholar] [CrossRef]
- Tsui, T.Y.; Oliver, W.C.; Pharr, G.M. Influences of stress on the measurement of mechanical properties using nanoindentation: Part I. Experimental studies in an aluminum alloy. J. Mater. Res. 1996, 11, 752–759. [Google Scholar] [CrossRef]
- Asaro, R.; Lubarda, V. Mechanics of Solids and Materials; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Cockayne, D.J.H.; Jenkins, M.L.; Ray, I.L.F. The measurement of stacking-fault energies of pure face-centred cubic metals. Philos. Mag. 1971, 24, 1383–1392. [Google Scholar] [CrossRef]
- Ludwigson, D.C. Modified stress-strain relation for FCC metals and alloys. Metall. Trans. 1971, 2, 2825–2828. [Google Scholar] [CrossRef]
- ABAQUS “ABAQUS Documentation”; Dassault Systèmes: Providence, RI, USA, 2011.
- Uchic, M.D.; Shade, P.A.; Dimiduk, D.M. Plasticity of micrometer-scale single crystals in compression. Annu. Rev. Mater. Res. 2009, 39, 361–386. [Google Scholar] [CrossRef]
- Papanikolaou, S.; Dimiduk, D.M.; Choi, W.; Sethna, J.P.; Uchic, M.D.; Woodward, C.F.; Zapperi, S. Quasi-periodic events in crystal plasticity and the self-organized avalanche oscillator. Nature 2012, 490, 517. [Google Scholar] [CrossRef]
- Papanikolaou, S.; Bohn, F.; Sommer, R.L.; Durin, G.; Zapperi, S.; Sethna, J.P. Universality beyond power laws and the average avalanche shape. Nat. Phys. 2011, 7, 316. [Google Scholar] [CrossRef]
- Budrikis, Z.; Castellanos, D.F.; Sandfeld, S.; Zaiser, M.; Zapperi, S. Universal features of amorphous plasticity. Nat. Commun. 2017, 8, 15928. [Google Scholar] [CrossRef]
- Song, H.; Yavas, H.; Van der Giessen, E.; Papanikolaou, S. Discrete dislocation dynamics simulations of nanoindentation with pre-stress: Hardness and statistics of abrupt plastic events. J. Mech. Phys. Solids 2019, 123, 332–347. [Google Scholar] [CrossRef]
- Bolin, R. Detecting the Onset of the bulk crystal plasticity transition in face centered cubic metals using nanoindentation; Graduate Theses, Dissertations, and Problem Reports; West Virginia University: Morgantown, WV, USA, 2018; p. 5228. Available online: https://researchrepository.wvu.edu/etd/5228 (accessed on 21 October 2019).
- Hou, X.; Jennett, N.M. Application of a modified slip-distance theory to the indentation of single-crystal and polycrystalline copper to model the interactions between indentation size and structure size effects. Acta Mater. 2012, 60, 4128–4135. [Google Scholar] [CrossRef]
- Nix, W.D.; Gao, H. Indentation size effects in crystalline materials: A law for strain gradient plasticity. J. Mech. Phys. Solids 1998, 46, 411–425. [Google Scholar] [CrossRef]
- Poole, W.J.; Ashby, M.F.; Fleck, N.A. Micro-hardness of annealed and work-hardened copper polycrystals. Scr. Mater. 1996, 34, 559–564. [Google Scholar] [CrossRef]
- Ma, Z.S.; Zhou, Y.C.; Long, S.G.; Lu, C. On the intrinsic hardness of a metallic film/substrate system: Indentation size and substrate effects. Int. J. Plast. 2012, 34, 1–11. [Google Scholar] [CrossRef]
- Pharr, G.M.; Herbert, E.G.; Gao, Y. The indentation size effect: A critical examination of experimental observations and mechanistic interpretations. Annu. Rev. Mater. Res. 2010, 40, 271–292. [Google Scholar] [CrossRef]
- Gerberich, W.W.; Tymiak, N.I.; Grunlan, J.C.; Horstemeyer, M.F.; Baskes, M.I. Interpretations of indentation size effects. J. Appl. Mech. 2002, 69, 433–442. [Google Scholar] [CrossRef]
- Zhou, C.; LeSar, R. Dislocation dynamics simulations of plasticity in polycrystalline thin films. Int. J. Plast. 2012, 30, 185–201. [Google Scholar] [CrossRef]
- El-Awady, J.A. Unravelling the physics of size-dependent dislocation-mediated plasticity. Nat. Commun. 2015, 6, 5926. [Google Scholar] [CrossRef] [PubMed]
Deflection (µm) | Total Strain% | Plastic Strain% | Tensile Stress (MPa) |
---|---|---|---|
0 | 0 | 0 | 0 |
9.7 | 0.031 | 0 | 19.1 |
22.6 | 0.065 | 0 | 40.13 |
31.6 | 0.11 | 0.04 | 41.86 |
40.3 | 0.15 | 0.08 | 43.21 |
49.3 | 0.2 | 0.127 | 44.6 |
58.3 | 0.24 | 0.165 | 45.9 |
71.7 | 0.31 | 0.233 | 47.12 |
82.3 | 0.36 | 0.283 | 47.35 |
Deflection (µm) | Total Strain% | Plastic Strain% | Tensile Stress (MPa) |
---|---|---|---|
2.3 | 0.005 | 0 | 3.5 |
9.3 | 0.05 | 0.009 | 20 |
11.2 | 0.1 | 0.04 | 20.11 |
Material Tested | Elastic Modulus (GPa) | Strength (0.2%) (MPa) |
---|---|---|
Cu (100) | 108 | 86 |
Al (100) | 71 | 112 |
Cu Polycrystal | 114 | 125 |
Al Polycrystal | 73 | 105 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bolin, R.; Yavas, H.; Song, H.; Hemker, K.J.; Papanikolaou, S. Bending Nanoindentation and Plasticity Noise in FCC Single and Polycrystals. Crystals 2019, 9, 652. https://doi.org/10.3390/cryst9120652
Bolin R, Yavas H, Song H, Hemker KJ, Papanikolaou S. Bending Nanoindentation and Plasticity Noise in FCC Single and Polycrystals. Crystals. 2019; 9(12):652. https://doi.org/10.3390/cryst9120652
Chicago/Turabian StyleBolin, Ryder, Hakan Yavas, Hengxu Song, Kevin J. Hemker, and Stefanos Papanikolaou. 2019. "Bending Nanoindentation and Plasticity Noise in FCC Single and Polycrystals" Crystals 9, no. 12: 652. https://doi.org/10.3390/cryst9120652
APA StyleBolin, R., Yavas, H., Song, H., Hemker, K. J., & Papanikolaou, S. (2019). Bending Nanoindentation and Plasticity Noise in FCC Single and Polycrystals. Crystals, 9(12), 652. https://doi.org/10.3390/cryst9120652