Long-Term Stability and Integrity of Plasmid-Based DNA Data Storage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Perl Script
2.2. Cloning of Information DNA
2.3. Storage of Plasmid DNA
2.4. Agarose Gel Electrophoresis (AGE) Analysis
2.5. Bacterial Transformation
3. Results and Discussion
3.1. Encoding
3.2. Data Storage in Plasmid DNA
3.3. Analysis of Long-Term Stability and Integrity of Plasmid DNA
3.4. Decoding
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Cox, J.P.L. Long-term data storage in DNA. Trends Biotechnol. 2001, 19, 247–250. [Google Scholar] [CrossRef]
- Smith, G.C.; Fiddes, C.C.; Hawkins, J.P.; Cox, J.P.L. Some possible codes for encrypting data in DNA. Biotechnology 2003, 25, 1125–1130. [Google Scholar]
- Ailenberg, M.; Rotstein, O.D. An improved Huffman coding method for archiving text, images, and music characters in DNA. Biotechniques 2009, 47, 747–754. [Google Scholar] [CrossRef] [PubMed]
- Clelland, C.T.; Risca, V.; Bancroft, C. Hiding messages in DNA microdots. Nature 1999, 399, 533–534. [Google Scholar] [CrossRef] [PubMed]
- Bancroft, C.; Bowler, T.; Bloom, B.; Clelland, C.T. Long-term storage of information in DNA. Science 2001, 293, 1763–1765. [Google Scholar] [CrossRef] [PubMed]
- Wong, P.C.; Wong, K.K.; Foote, H. Organic data memory, using the DNA approach. Commun. ACM 2003, 46, 95–98. [Google Scholar] [CrossRef]
- Church, G.M.; Gao, Y.; Kosuri, S. Next-generation digital information storage in DNA. Science 2012, 337, 1628. [Google Scholar] [CrossRef] [PubMed]
- Goldman, N.; Bertone, P.; Chen, S.; Dessimoz, C.; Le Proust, E.M.; Sipos, B.; Birney, E. Towards practical, high-capacity, low-maintenance information storage in synthesized DNA. Nature 2013, 494, 77–80. [Google Scholar] [CrossRef] [PubMed]
- Grass, R.N.; Heckel, R.; Puddu, M.; Paunescu, D.; Stark, W.J. Robust chemical preservation of digital information on DNA in silica with error-correcting codes. Angew. Chem. Int. Ed. 2015, 54, 2552–2555. [Google Scholar] [CrossRef] [PubMed]
- Murakami, M. Evaluation of DNA plasmid storage conditions. Open Biotechnol. J. 2013, 7, 10–14. [Google Scholar] [CrossRef]
- Carr, P.A.; Church, G.M. Genome engineering. Nat. Biotechnol. 2009, 27, 1151–1162. [Google Scholar] [CrossRef] [PubMed]
- Quail, M.A.; Swerdlow, H.; Turner, D.J. Improved protocols for the illumina genome analyzer sequencing system. Curr. Protoc. Hum. Genet. 2009, 62. [Google Scholar] [CrossRef]
- Bahassi, E.M.; Stambrook, P.J. Next-generation sequencing technologies: breaking the sound barrier of human genetics. Mutagenesis 2014, 29, 303–310. [Google Scholar] [CrossRef] [PubMed]
Fragments | Forward primer | Reverse primer |
---|---|---|
1 | 5′-GAATTCACTCATCCCAACTG-3′ | 5′-GAATTCAGATTGCCGAGAAT-3′ |
2 | 5′-GAATTCACGGAGCGACATGA-3′ | 5′-GAATTCACAGCTGTTGATAA-3′ |
3 | 5′-GAATTCCTAGCAGTTCTAAT-3′ | 5′-GAATTCGACGATGGCAAAAG-3′ |
4 | 5′-GAATTCGTAAAAGCCTCCAA-3′ | 5′-GAATTCGTATGATCAATCTC-3′ |
5 | 5′-GAATTCCTATCGGCACAGAA-3′ | 5′-GAATTCCGGCGTCGTGTCAC-3′ |
6 | 5′-GAATTCATGGGTAGCGGACT-3′ | 5′-GAATTCTGTGGTTGACCAAA-3′ |
7 | 5′-GAATTCATTCGCTAGGGGAC-3′ | 5′-GAATTCACGCCGCAGGACCT-3′ |
8 | 5′-GAATTCACATCACTTTGTAT-3′ | 5′-GAATTCTGGGCTGGTTGCAC-3′ |
9 | 5′-GAATTCAGTGGGGCCAGGCA-3′ | 5′-GAATTCAACCAGCTGAGTCT-3′ |
10 | 5′-GAATTCCCTGTGTTAGCTCG-3′ | 5′-GAATTCGTCATCCCTAGCCT-3′ |
11 | 5′-GAATTCAGCTCTTTAAACAT-3′ | 5′-GAATTCGACGCCCCCAGCCT-3′ |
12 | 5′-GAATTCGAACGGTCGAGAAG-3′ | 5′-GAATTCCGAGGTACTATGAG-3′ |
13 | 5′-GAATTCGGTACCAACTTACT-3′ | 5′-GAATTCCAAGCAATAGCCTG-3′ |
14 | 5′-GAATTCAAGCTGTACTATTT-3′ | 5′-GAATTCGCGCTCCCCCCCTG-3′ |
15 | 5′-GAATTCTGATGGTCTCTTCT-3′ | 5′-GAATTCGTTGAGTCATCAGA-3′ |
16 | 5′-GAATTCTCGCAAGGGTCGTG-3′ | 5′-GAATTCGAAGGAACCGACTT-3′ |
17 | 5′-GAATTCAATGGTTAAAAATC-3′ | 5′-GAATTCCACAGTGAGCCTTT-3′ |
18 | 5′-GAATTCCAGACTGGAGCGCC-3′ | 5′-GAATTCCGAGCCGCTAGATG-3′ |
19 | 5′-GAATTCCGTCTCGAATGCTC-3′ | 5′-GAATTCTGACAAAGGGGACC-3′ |
20 | 5′-GAATTCTTCCGGATAAATTC-3′ | 5′-GAATTCTGAATGAGGGGTAT-3′ |
21 | 5′-GAATTCCTAGCTTGCGAAGT-3′ | 5′-GAATTCATATACCAATGTAG-3′ |
22 | 5′-GAATTCGAATCCGACCTAGA-3′ | 5′-GAATTCTTTAAGTGCCCTCT-3′ |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, H.H.; Park, J.; Park, S.J.; Lee, C.-S.; Hwang, S.; Shin, Y.-B.; Ha, T.H.; Kim, M. Long-Term Stability and Integrity of Plasmid-Based DNA Data Storage. Polymers 2018, 10, 28. https://doi.org/10.3390/polym10010028
Nguyen HH, Park J, Park SJ, Lee C-S, Hwang S, Shin Y-B, Ha TH, Kim M. Long-Term Stability and Integrity of Plasmid-Based DNA Data Storage. Polymers. 2018; 10(1):28. https://doi.org/10.3390/polym10010028
Chicago/Turabian StyleNguyen, Hoang Hiep, Jeho Park, Seon Joo Park, Chang-Soo Lee, Seungwoo Hwang, Yong-Beom Shin, Tai Hwan Ha, and Moonil Kim. 2018. "Long-Term Stability and Integrity of Plasmid-Based DNA Data Storage" Polymers 10, no. 1: 28. https://doi.org/10.3390/polym10010028
APA StyleNguyen, H. H., Park, J., Park, S. J., Lee, C.-S., Hwang, S., Shin, Y.-B., Ha, T. H., & Kim, M. (2018). Long-Term Stability and Integrity of Plasmid-Based DNA Data Storage. Polymers, 10(1), 28. https://doi.org/10.3390/polym10010028