Cross-Flow Catalysis Behavior of a PVDF/SiO2@Ag Nanoparticles Composite Membrane
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials and Reagents
2.2. Synthesis of SiO2-NH2 Microspheres
2.3. Preparation of the Composite Membrane
2.4. Characterization
2.4.1. Characterization of Composition, Structure, and Morphology
2.4.2. Water Contact Angle Measurement
2.5. Measurements of a Membrane’s Porosity and Pore Size
2.6. Measurement of Metal Content
2.7. Pure Water Flux through a Membrane
2.8. Catalytic Reduction of p-Nitrophenol by a Composite Membrane
2.9. Reusability Test
3. Results and Discussion
3.1. Characterizations of SiO2 and SiO2-NH2 Microspheres
3.2. Chemical Composition of a Membrane
3.3. Morphology and Structure of the Membrane
3.4. Catalytic Property
3.4.1. Catalytic Kinetics
3.4.2. Effect of the Initial Concentration of p-Nitrophenol
3.4.3. Effect of Operating Pressure
3.4.4. Catalytic Activity as a Function of Ag Coating Content
3.4.5. Temperature Dependence and Activation Energy Calculation
3.5. Reusability of the Composite Membrane
3.6. Separation of Products from Reactants
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Bi, C.; Cao, J.; Lina, H.; Wang, Y.; Chen, S. Enhanced photocatalytic activity of Bi12O17Cl2 through loading Pt quantum dots as a highly efficient electron capturer. Appl. Catal. B 2016, 195, 132–140. [Google Scholar] [CrossRef]
- Li, K.; Chen, X.; Wang, Z.; Xu, L.; Fu, W.; Zhao, L.; Chen, L. Temperature-responsive catalytic performance of Ag nanoparticles endowed by poly (N-isopropylacrylamide-co-acrylic acid) microgels. Polym. Compos. 2017, 38, 708–718. [Google Scholar] [CrossRef]
- Celebi, M.; Yurderi, M.; Bulut, A.; Kaya, M.; Zahmakiran, M. Palladium nanoparticles supported on amine-functionalized SiO2 for the catalytic hexavalent chromium reduction. Appl. Catal. B 2016, 180, 53–64. [Google Scholar] [CrossRef]
- Herves, P.; Perez-Lorenzo, M.; Liz-Marzan, L.M.; Dzubiella, J.; Lu, Y.; Ballauff, M. Catalysis by metallic nanoparticles in aqueous solution: Model reactions. Chem. Soc. Rev. 2012, 41, 5577–5587. [Google Scholar] [CrossRef] [PubMed]
- Zhan, P.; Wang, Z.-G.; Li, N.; Ding, B. Engineering Gold Nanoparticles with DNA Ligands for Selective Catalytic Oxidation of Chiral Substrates. ACS Catal. 2015, 5, 1489–1498. [Google Scholar] [CrossRef]
- Gu, J.; Zhang, Y.W.; Tao, F.F. Shape control of bimetallic nanocatalysts through well-designed colloidal chemistry approaches. Chem. Soc. Rev. 2012, 41, 8050–8065. [Google Scholar] [CrossRef] [PubMed]
- Linic, S.; Christopher, P.; Xin, H.; Marimuthu, A. Catalytic and Photocatalytic Transformations on Metal Nanoparticles with Targeted Geometric and Plasmonic Properties. Acc. Chem. Res. 2013, 46, 1890–1899. [Google Scholar] [CrossRef] [PubMed]
- Dong, Z.; Le, X.; Dong, C.; Zhang, W.; Li, X.; Ma, J. Ni@Pd core-shell nanoparticles modified fibrous silica nanospheres as highly efficient and recoverable catalyst for reduction of 4-nitrophenol and hydrodechlorination of 4-chlorophenol. Appl. Catal. B 2015, 162, 372–380. [Google Scholar] [CrossRef]
- Chi, Y.; Yuan, Q.; Li, Y.; Tu, J.; Zhao, L.; Li, N.; Li, X. Synthesis of Fe3O4@SiO2-Ag magnetic nanocomposite based on small-sized and highly dispersed silver nanoparticles for catalytic reduction of 4-nitrophenol. J. Colloid Interface Sci. 2012, 383, 96–102. [Google Scholar] [CrossRef] [PubMed]
- Du, X.; He, J.; Zhu, J.; Sun, L.; An, S. Ag-deposited silica-coated Fe3O4 magnetic nanoparticles catalyzed reduction of p-nitrophenol. Appl. Surf. Sci. 2012, 258, 2717–2723. [Google Scholar] [CrossRef]
- Xiao, W.; Zhang, Y.; Liu, B. Raspberrylike SiO2@reduced graphene oxide@AgNP composite microspheres with high aqueous dispersity and excellent catalytic activity. ACS Appl. Mater. Interfaces 2015, 7, 6041–6046. [Google Scholar] [CrossRef] [PubMed]
- Tang, M.; Huang, G.; Li, X.; Pang, X.; Qiu, H. A facile approach to fabricate Au nanoparticles loaded SiO2 microspheres for catalytic reduction of 4-nitrophenol. Mater. Chem. Phys. 2015, 162, 31–40. [Google Scholar] [CrossRef]
- Chen, X.; Wang, Z.; Bi, S.; Li, K.; Du, R.; Wu, C.; Chen, L. Combining catalysis and separation on a PVDF/Ag composite membrane allows timely separation of products during reaction process. Chem. Eng. J. 2016, 295, 518–529. [Google Scholar] [CrossRef]
- Fountoulaki, S.; Daikopoulou, V.; Gkizis, P.L.; Tamiolakis, I.; Armatas, G.S.; Lykakis, I.N. Mechanistic Studies of the Reduction of Nitroarenes by NaBH4 or Hydrosilanes Catalyzed by Supported Gold Nanoparticles. ACS Catal. 2014, 4, 3504–3511. [Google Scholar] [CrossRef]
- Gu, Y.; Favier, I.; Pradel, C.; Gin, D.L.; Lahitte, J.-F.; Noble, R.D.; Gómez, M.; Remigy, J.-C. High catalytic efficiency of palladium nanoparticles immobilized in a polymer membrane containing poly(ionic liquid) in Suzuki-Miyaura cross-coupling reaction. J. Membr. Sci. 2015, 492, 331–339. [Google Scholar] [CrossRef] [Green Version]
- Prakash, S.; Charan, C.; Singh, A.K.; Shahi, V.K. Mixed metal nanoparticles loaded catalytic polymer membrane for solvent free selective oxidation of benzyl alcohol to benzaldehyde in a reactor. Appl. Catal. B 2013, 132, 62–69. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, X.; Li, K.; Bi, S.; Wu, C.; Chen, L. Preparation and catalytic property of PVDF composite membrane with polymeric spheres decorated by Pd nanoparticles in membrane pores. J. Membr. Sci. 2015, 496, 95–107. [Google Scholar] [CrossRef]
- Emin, C.; Remigy, J.-C.; Lahitte, J.-F. Influence of UV grafting conditions and gel formation on the loading and stabilization of palladium nanoparticles in photografted polyethersulfone membrane for catalytic reactions. J. Membr. Sci. 2014, 455, 55–63. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; He, Y.; Shi, C.; Fu, W.; Bi, S.; Wang, Z.; Chen, L. Temperature- and pH-responsive membranes based on poly(vinylidene fluoride) functionalized with microgels. J. Membr. Sci. 2014, 469, 447–457. [Google Scholar] [CrossRef]
- He, Y.; Chen, X.; Bi, S.; Fu, W.; Shi, C.; Chen, L. Conferring pH-sensitivity on poly (vinylidene fluoride) membrane by poly(acrylic acid-co-butyl acrylate) microgels. React. Funct. Polym. 2014, 74, 58–66. [Google Scholar] [CrossRef]
- Lau, W.N.; Yeung, K.L.; Martin-Aranda, R. Knoevenagel condensation reaction between benzaldehyde and ethyl acetoacetate in microreactor and membrane microreactor. Microporous Mesoporous Mater. 2008, 115, 156–163. [Google Scholar] [CrossRef]
- Yang, H.C.; Zhong, W.; Hou, J.; Chen, V.; Xu, Z.K. Janus hollow fiber membrane with a mussel-inspired coating on the lumen surface for direct contact membrane distillation. J. Membr. Sci. 2017, 523, 1–7. [Google Scholar] [CrossRef]
- Wong, Y.J.; Zhu, L.; Teo, W.S.; Tan, Y.W.; Yang, Y.; Wang, C.; Chen, H. Revisiting the Stöber method: Inhomogeneity in silica shells. J. Am. Chem. Soc. 2011, 133, 11422–11425. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Zhao, B.; Han, P.; Fu, W.; Chen, L. Temperature- and pH-sensitive membrane formed from blends of poly(vinylidene fluoride)-graft-poly(N-isopropylacrylamide) and poly(acrylic acid) microgels. React. Funct. Polym. 2014, 84, 10–20. [Google Scholar] [CrossRef]
- Chen, X.; Zhao, B.; Zhao, L.; Bi, S.; Han, P.; Feng, X.; Chen, L. Temperature- and pH-responsive properties of poly(vinylidene fluoride) membranes functionalized by blending microgels. RSC Adv. 2014, 4, 29933. [Google Scholar] [CrossRef]
- Kim, J.; Fu, Q.; Xie, K.; Scofield, J.M.P.; Kentish, S.E.; Qiao, G.G. CO2 separation using surface-functionalized SiO2 nanoparticles incorporated ultra-thin film composite mixed matrix membranes for post-combustion carbon capture. J. Membr. Sci. 2016, 515, 54–62. [Google Scholar] [CrossRef]
- Choi, D.-W.; Chung, K.-B.; Park, J.-S. Rapid vapor deposition SiO2 thin film deposited at a low temperature using tris(tert-pentoxy)silanol and trimethyl-aluminum. Mater. Chem. Phys. 2013, 142, 614–618. [Google Scholar] [CrossRef]
- Ren, G.; Wang, W.; Shang, M.; Zou, H.; Cheng, S. Using a Macroporous Silver Shell to Coat Sulfonic Acid Group-Functionalized Silica Spheres and Their Applications in Catalysis and Surface-Enhanced Raman Scattering. Langmuir ACS J. Surf. Colloids 2015, 31, 10517–10523. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Yan, J.; Xu, Y.; Song, Y.; Li, H.; Xia, J.; Huang, C.; Wan, H. Novel visible-light-driven AgX/graphite-like C3N4 (X=Br, I) hybrid materials with synergistic photocatalytic activity. Appl. Catal. B 2013, 129, 182–193. [Google Scholar] [CrossRef]
- Yang, H.C.; Hou, J.; Chen, V.; Xu, Z.K. Surface and interface engineering for organic-inorganic composite membranes. J. Mater. Chem. A 2016, 4. [Google Scholar] [CrossRef]
- Zhang, F.; Zhang, W.; Yu, Y.; Deng, B.; Li, J.; Jin, J. Sol-gel preparation of PAA-g-PVDF/TiO2 nanocomposite hollow fiber membranes with extremely high water flux and improved antifouling property. J. Membr. Sci. 2013, 432, 25–32. [Google Scholar] [CrossRef]
- Oh, J.-S.; Luong, N.D.; Hwang, T.-S.; Hong, J.-P.; Lee, Y.K.; Nam, J.-D. In situ fabrication of platinum/graphene composite shell on polymer microspheres through reactive self-assembly and in situ reduction. J. Mater. Sci. 2012, 48, 1127–1133. [Google Scholar] [CrossRef]
- Ibrahim, I.; Ali, I.O.; Salama, T.M.; Bahgat, A.A.; Mohamed, M.M. Synthesis of magnetically recyclable spinel ferrite (MFe2O4, M=Zn, Co, Mn) nanocrystals engineered by sol gel-hydrothermal technology: High catalytic performances for nitroarenes reduction. Appl. Catal. B 2016, 181, 389–402. [Google Scholar] [CrossRef]
- Narayanan, K.B.; Park, H.H.; Han, S.S. Synthesis and characterization of biomatrixed-gold nanoparticles by the mushroom Flammulina velutipes and its heterogeneous catalytic potential. Chemosphere 2015, 141, 169–175. [Google Scholar] [CrossRef] [PubMed]
- Armenise, S.; Garcia-Bordeje, E.; Valverde, J.L.; Romeo, E.; Monzon, A. A Langmuir-Hinshelwood approach to the kinetic modelling of catalytic ammonia decomposition in an integral reactor. Phys. Chem. Chem. Phys. PCCP 2013, 15, 12104–12117. [Google Scholar] [CrossRef] [PubMed]
Sample | Average pore size (nm) | Porosity (%) | Ag loading (μg/cm2) | Contact angle (°) |
---|---|---|---|---|
PVDF/SiO2 | 120.0 ± 4 | 70.1 | 0 | 83.5 |
MB-Ag-1 | 125.0 ± 6 | 71.2 | 59.960 | 81.5 |
MB-Ag-2 | 125.0 ± 3 | 71.2 | 16.789 | 80.8 |
MB-Ag-3 | 125.0 ± 5 | 71.2 | 5.321 | 80.2 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.; Chen, X.; Zhao, C.; Zhao, B.; Dong, H.; Ma, S.; Li, L.; Chen, L.; Zhang, B. Cross-Flow Catalysis Behavior of a PVDF/SiO2@Ag Nanoparticles Composite Membrane. Polymers 2018, 10, 59. https://doi.org/10.3390/polym10010059
Wang W, Chen X, Zhao C, Zhao B, Dong H, Ma S, Li L, Chen L, Zhang B. Cross-Flow Catalysis Behavior of a PVDF/SiO2@Ag Nanoparticles Composite Membrane. Polymers. 2018; 10(1):59. https://doi.org/10.3390/polym10010059
Chicago/Turabian StyleWang, Wenqiang, Xi Chen, Chu Zhao, Bowu Zhao, Hualin Dong, Shengkui Ma, Liying Li, Li Chen, and Bin Zhang. 2018. "Cross-Flow Catalysis Behavior of a PVDF/SiO2@Ag Nanoparticles Composite Membrane" Polymers 10, no. 1: 59. https://doi.org/10.3390/polym10010059
APA StyleWang, W., Chen, X., Zhao, C., Zhao, B., Dong, H., Ma, S., Li, L., Chen, L., & Zhang, B. (2018). Cross-Flow Catalysis Behavior of a PVDF/SiO2@Ag Nanoparticles Composite Membrane. Polymers, 10(1), 59. https://doi.org/10.3390/polym10010059