Combination of Magnetic Lignocellulosic Particles, High-Density Polyethylene, and Carbon Black for the Construction of Composites with Tunable Functionalities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Treatment of Wood Flour
2.3. Formation of the Magnetic Biocomposites
2.4. Microstructure of Wood Flour and Biocomposites
2.5. X Ray Diffraction
2.6. Fourier Transformed Infrared (FTIR)
2.7. Magnetic Properties
2.8. Antistatic Property
2.9. Mechanical Tests
3. Results and Discussion
3.1. Characteristics of Magnetic Lignocellulosic Particles
3.2. The Structural and Surface Morphology of the Magnetic Biocomposites
3.3. Magnetic Property of the Biocomposites
3.4. Mechanical Properties of Magnetic Biocomposites
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Hsiao, S.T.; Ma, C.C.; Liao, W.H.; Wang, Y.S.; Li, S.M.; Huang, Y.C.; Yang, R.B.; Liang, W.F. Lightweight and flexible reduced graphene oxide/water-borne polyurethane composites with high electrical conductivity and excellent electromagnetic interference shielding performance. ACS Appl. Mater. Interfaces 2014, 6, 10667–10678. [Google Scholar] [CrossRef] [PubMed]
- Shen, B.; Zhai, W.; Zheng, W. Ultrathin flexible graphene film: An excellent thermal conducting material with efficient emi shielding. Adv. Funct. Mater. 2014, 24, 4542–4548. [Google Scholar] [CrossRef]
- Kashi, S.; Gupta, R.K.; Baum, T.; Kao, N.; Bhattacharya, S.N. Morphology, electromagnetic properties and electromagnetic interference shielding performance of poly lactide/graphene nanoplatelet nanocomposites. Mater. Des. 2016, 95, 119–126. [Google Scholar] [CrossRef]
- Li, Y.; Church, J.S.; Woodhead, A.L. Infrared and raman spectroscopic studies on iron oxide magnetic nano-particles and their surface modifications. J. Magn. Magn. Mater. 2012, 324, 1543–1550. [Google Scholar] [CrossRef]
- Gómez-Pastora, J.; Dominguez, S.; Bringas, E.; Rivero, M.J.; Ortiz, I.; Dionysiou, D.D. Review and perspectives on the use of magnetic nanophotocatalysts (MNPCS) in water treatment. Chem. Eng. J. 2017, 310, 407–427. [Google Scholar] [CrossRef]
- Lee, S.H.; Yu, S.; Lee, J.E.; Jin, A.; Lee, D.J.; Lee, N.; Jo, H.; Shin, K.; Ahn, T.Y.; Kim, Y.W. Self-assembled Fe3O4 nanoparticle clusters as high-performance anodes for lithium ion batteries via geometric confinement. Nano Lett. 2013, 13, 4249–4256. [Google Scholar] [CrossRef] [PubMed]
- Pan, L.; Zhu, X.; Xie, X.; Liu, Y. Smart hybridization of TiO2 nanorods and Fe3O4 nanoparticles with pristine graphene nanosheets: Hierarchically nanoengineered ternary heterostructures for high-rate lithium storage. Adv. Funct. Mater 2015, 25, 3341–3350. [Google Scholar] [CrossRef]
- Hong, H.; Kim, J.; Kim, T.-I. Effective assembly of nano-ceramic materials for high and anisotropic thermal conductivity in a polymer composite. Polymers 2017, 9, 413. [Google Scholar] [CrossRef]
- Kokate, K.K.; Bhandarkar, S.E.; Kulkarni, S.A. Synthesis and magnetic properties of poly(3,4-ethylenedioxythiophene)(PEDOT)/Fe3O4 composites. IJITR 2015, 3, 1925–1929. [Google Scholar]
- Zare, Y. Study of nanoparticles aggregation/agglomeration in polymer particulate nanocomposites by mechanical properties. Compos. A 2016, 84, 158–164. [Google Scholar] [CrossRef]
- Oka, H.; Hamano, H.; Chiba, S. Experimental study on actuation functions of coating-type magnetic wood. J. Magn. Magn. Mater. 2004, 272, E1693–E1694. [Google Scholar] [CrossRef]
- Oka, H.; Hojo, A.; Osada, H.; Namizaki, Y.; Taniuchi, H. Manufacturing methods and magnetic characteristics of magnetic wood. J. Magn. Magn. Mater. 2004, 272, 2332–2334. [Google Scholar] [CrossRef]
- Merk, V.; Chanana, M.; Gierlinger, N.; Hirt, A.M.; Burgert, I. Hybrid wood materials with magnetic anisotropy dictated by the hierarchical cell structure. ACS Appl. Mater. Interfaces 2014, 6, 9760–9767. [Google Scholar] [CrossRef] [PubMed]
- Trey, S.; Olsson, R.T.; Ström, V.; Berglund, L.; Johansson, M. Controlled deposition of magnetic particles within the 3-D template of wood: Making use of the natural hierarchical structure of wood. RSC Adv. 2014, 4, 35678–35685. [Google Scholar] [CrossRef]
- Gan, W.; Liu, Y.; Gao, L.; Zhan, X.; Li, J. Growth of CoFe2O4 particles on wood template using controlled hydrothermal method at low temperature. Ceram. Int. 2015, 41, 14876–14885. [Google Scholar] [CrossRef]
- Gan, W.; Gao, L.; Zhang, W.; Li, J.; Zhan, X. Fabrication of microwave absorbing CoFe2O4 coatings with robust superhydrophobicity on natural wood surfaces. Ceram. Int. 2016, 42, 13199–13206. [Google Scholar] [CrossRef]
- Gan, W.; Liu, Y.; Gao, L.; Zhan, X.; Li, J. Magnetic property, thermal stability, UV-resistance, and moisture absorption behavior of magnetic wood composites. Polym. Compos. 2017, 38, 1646–1654. [Google Scholar] [CrossRef]
- Ou, R.; Xie, Y.; Wolcott, M.P.; Yuan, F.; Wang, Q. Effect of wood cell wall composition on the rheological properties of wood particle/high density polyethylene composites. Compos. Sci. Technol. 2014, 93, 68–75. [Google Scholar] [CrossRef]
- Chung, M.; Park, J. An experimental study on the thermal performance of phase-change material and wood-plastic composites for building roofs. Energies 2017, 10, 195. [Google Scholar] [CrossRef]
- Wang, W.; Peng, Y.; Zammarano, M.; Zhang, W.; Li, J. Effect of ammonium polyphosphate to aluminum hydroxide mass ratio on the properties of wood-flour/polypropylene composites. Polymers 2017, 9, 615. [Google Scholar] [CrossRef]
- Bai, G.; Li, L. Preparation and property of flame retardant and anti-static wood flour polypropylene composites. J. Beijing For. Univ. 2014, 36, 136–141. [Google Scholar]
- Zhou, Y.; Ning, L.; Li, X.; Zhang, J.; Lu, Y.; He, J. Effect of natural flake graphite on triboelectrification electrostatic potential of bamboo flour/high-density polyethylene composites. Wood Sci. Technol. 2015, 49, 1269–1280. [Google Scholar] [CrossRef]
- Yu, F.; Xu, F.; Song, Y.; Fang, Y.; Zhang, Z.; Wang, Q.; Wang, F. Expandable graphite’s versatility and synergy with carbon black and ammonium polyphosphate in improving antistatic and fire-retardant properties of wood flour/polypropylene composites. Polym. Compos. 2017, 38, 767–773. [Google Scholar] [CrossRef]
- Tsurumaki, A.; Tajima, S.; Iwata, T.; Scrosati, B.; Ohno, H. Evaluation of ionic liquids as novel antistatic agents for polymethacrylates. Electrochim. Acta 2017, 248, 556–561. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, T.; Wang, J.; Guo, W.; Qian, Z.; Wei, T. Preparation of antistatic high-density polyethylene composites based on synergistic effect of graphene nanoplatelets and multi-walled carbon nanotubes. Polym. Adv. Technol. 2017. [Google Scholar] [CrossRef]
- Gao, H.; Wu, G.; Zhang, K.; Guan, H.; Yang, X.; Lan, Y. Preperation and magnetic properties of Fe3O4/wood composite. Funct. Mater. 2010, 41, 1900–1902. [Google Scholar]
- Laurent, S.; Forge, D.; Port, M.; Roch, A.; Robic, C.; Vander Elst, L.; Muller, R.N. Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev. 2008, 108, 2064–2110. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Lu, Y.; Yang, D.; Sun, Q.; Liu, Y.; Zhao, H. Lignocellulose aerogel from wood-ionic liquid solution (1-allyl-3-methylimidazolium chloride) under freezing and thawing conditions. Biomacromolecules 2011, 12, 1860–1867. [Google Scholar] [CrossRef] [PubMed]
- Toba, K.; Yamamoto, H.; Yoshida, M. Crystallization of cellulose microfibrils in wood cell wall by repeated dry-and-wet treatment, using X-ray diffraction technique. Cellulose 2013, 20, 633–643. [Google Scholar] [CrossRef]
- Okon, K.E.; Lin, F.; Chen, Y.; Huang, B. Effect of silicone oil heat treatment on the chemical composition, cellulose crystalline structure and contact angle of chinese parasol wood. Carbohydr. Polym. 2017. [Google Scholar] [CrossRef] [PubMed]
- He, Q.; Yuan, T.; Zhu, J.; Luo, Z.; Haldolaarachchige, N.; Sun, L.; Khasanov, A.; Li, Y.; Young, D.; Wei, S.; et al. Magnetic high density polyethylene nanocomposites reinforced with in-situ synthesized Fe@ FeO core-shell nanoparticles. Polymer 2012, 53, 3642–3652. [Google Scholar] [CrossRef]
- Sreeja, V.; Joy, P. Microwave–hydrothermal synthesis of γ-Fe2O3 nanoparticles and their magnetic properties. Mater. Res. Bull. 2007, 42, 1570–1576. [Google Scholar] [CrossRef]
- Tao, K.; Dou, H.; Sun, K. Interfacial coprecipitation to prepare magnetite nanoparticles: Concentration and temperature dependence. Colloids Surf. A 2008, 320, 115–122. [Google Scholar] [CrossRef]
- Issa, B.; Obaidat, I.M.; Albiss, B.A.; Haik, Y. Magnetic nanoparticles: Surface effects and properties related to biomedicine applications. Int. J. Mol. Sci. 2013, 14, 21266–21305. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Yu, X.; Smith, L.; Wang, G.; Cheng, H.; Zhang, S. Interfacial properties of bamboo fiber-reinforced high-density polyethylene composites by different methods for adding nano calcium carbonate. Polymers 2017, 9, 587. [Google Scholar] [CrossRef]
- Fu, S.; Feng, X.; Lauke, B.; Mai, Y. Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate-polymer composites. Compos. B 2008, 39, 933–961. [Google Scholar] [CrossRef]
- Jagur-Grodzinski, J. Electronically conductive polymers. Polym. Adv. Technol. 2002, 13, 615–625. [Google Scholar] [CrossRef]
- Wang, Q.; Li, J. The fire-retardant mechanism of fire-retardant FRW for wood. Sci. Silvae Sin. 2005, 41, 123. [Google Scholar]
- Khonsari, A.; Taghiyari, H.; Karimi, A.; Tajvidi, M. Study on the effects of wood flour geometry on physical and mechanical properties of wood-plastic composites. Maderas. Ciencia y Tecnol. 2015, 17, 545–558. [Google Scholar] [CrossRef]
- Bartczak, Z.; Argon, A.; Cohen, R.; Weinberg, M. Toughness mechanism in semi-crystalline polymer blends: Ii. High-density polyethylene toughened with calcium carbonate filler particles. Polymer 1999, 40, 2347–2365. [Google Scholar] [CrossRef]
Sample Type | Untreated Wood Flour (wt %) | Magnetic Wood Flour (wt %) | HDPE (wt %) | MAPE (wt %) | Paraffin Wax (wt %) | Stearic Acid (wt %) | Black Carbon (wt %) * |
---|---|---|---|---|---|---|---|
MWPC0 | 50 | - | 42.68 | 4 | 1 | 1 | 1.32 |
MWPC10 | 40 | 10 | 42.68 | 4 | 1 | 1 | 1.32 |
MWPC20 | 30 | 20 | 42.68 | 4 | 1 | 1 | 1.32 |
MWPC30 | 20 | 30 | 42.68 | 4 | 1 | 1 | 1.32 |
MWPC40 | 10 | 40 | 42.68 | 4 | 1 | 1 | 1.32 |
MWPC50 | - | 50 | 42.68 | 4 | 1 | 1 | 1.32 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Wang, H.; Wang, H.; Xing, D.; Zhang, Z.; Wang, Q. Combination of Magnetic Lignocellulosic Particles, High-Density Polyethylene, and Carbon Black for the Construction of Composites with Tunable Functionalities. Polymers 2018, 10, 9. https://doi.org/10.3390/polym10010009
Zhang J, Wang H, Wang H, Xing D, Zhang Z, Wang Q. Combination of Magnetic Lignocellulosic Particles, High-Density Polyethylene, and Carbon Black for the Construction of Composites with Tunable Functionalities. Polymers. 2018; 10(1):9. https://doi.org/10.3390/polym10010009
Chicago/Turabian StyleZhang, Jingfa, Haowei Wang, Haigang Wang, Dan Xing, Zhijun Zhang, and Qingwen Wang. 2018. "Combination of Magnetic Lignocellulosic Particles, High-Density Polyethylene, and Carbon Black for the Construction of Composites with Tunable Functionalities" Polymers 10, no. 1: 9. https://doi.org/10.3390/polym10010009
APA StyleZhang, J., Wang, H., Wang, H., Xing, D., Zhang, Z., & Wang, Q. (2018). Combination of Magnetic Lignocellulosic Particles, High-Density Polyethylene, and Carbon Black for the Construction of Composites with Tunable Functionalities. Polymers, 10(1), 9. https://doi.org/10.3390/polym10010009