Amino Functionalization of Reduced Graphene Oxide/Tungsten Disulfide Hybrids and Their Bismaleimide Composites with Enhanced Mechanical Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Materials
2.2. Experimental Section
2.2.1. Synthesis of Graphene Oxide/WS2 Nanosheets (GO/WS2)
2.2.2. Preparation of NH2-rGO/WS2 Hybrid Nanoparticles
2.2.3. Preparation of NH2-rGO/WS2/BMI Composites
2.3. Characterization
3. Results and Discussion
3.1. Characterization of NH2-rGO/WS2 Nanoparticles
3.2. Mechanical Properties of NH2-rGO/WS2/BMI Composites
3.3. Thermal Properties of NH2-rGO/WS2/BMI Composites
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Iredale, R.J.; Ward, C.; Hamerton, I. Modern advances in bismaleimide resin technology: A 21st century perspective on the chemistry of addition polyimides. Prog. Polym. Sci. 2017, 69, 1–21. [Google Scholar] [CrossRef]
- Ren, Z.; Cheng, Y.; Li, Y.; Xiao, F. Preparation and characterization of soluble bismaleimide-triazine resins based on asymmetric bismaleimide. J. Appl. Polym. Sci. 2017, 134. [Google Scholar] [CrossRef]
- Ren, Z.; Cheng, Y.; Kong, L.; Qi, T.; Xiao, F. High glass transition temperature bismaleimide-triazine resins based on soluble amorphous bismaleimide monomer. J. Appl. Polym. Sci. 2016, 133. [Google Scholar] [CrossRef]
- Li, W.; Wang, M.; Yue, Y.; Ji, W.; Ren, R. Enhanced mechanical and thermal properties of bismaleimide composites with covalent functionalized graphene oxide. RSC Adv. 2016, 6, 54410–54417. [Google Scholar] [CrossRef]
- Wang, Y.; Kou, K.; Zhuo, L.; Chen, H.; Zhang, Y.; Wu, G. Thermal, mechanical and dielectric properties of BMI modified by the Bis allyl benzoxazine. J. Polym. Res. 2015, 22, 51. [Google Scholar] [CrossRef]
- Zhang, X.; Akram, R.; Zhang, S.; Ma, H.; Wu, Z.; Wu, D. Hexa(eugenol)cyclotriphosphazene modified bismaleimide resins with unique thermal stability and flame retardancy. React. Funct. Polym. 2017, 113, 77–84. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, Y.; Jiao, L.; Chen, J. A graphene-like MoS2/graphene nanocomposite as a high performance anode for lithium ion batteries. J. Mater. Chem. A 2014, 2, 13109–13115. [Google Scholar] [CrossRef]
- Li, W.; Zhou, B.; Wang, M.; Li, Z.; Ren, R. Silane functionalization of graphene oxide and its use as a reinforcement in bismaleimide composites. J. Mater. Sci. 2015, 50, 5402–5410. [Google Scholar] [CrossRef]
- Khobragade, P.S.; Hansora, D.P.; Naik, J.B.; Njuguna, J.; Mishra, S. Physico-mechanical properties of nano-polystyrene-decorated graphene oxide–epoxy composites. Polym. Int. 2017, 66, 1402–1409. [Google Scholar] [CrossRef]
- Cobos, M.; González, B.; Fernández, M.J.; Fernández, M.D. Chitosan–graphene oxide nanocomposites: Effect of graphene oxide nanosheets and glycerol plasticizer on thermal and mechanical properties. J. Appl. Polym. Sci. 2017, 134. [Google Scholar] [CrossRef]
- Zhou, L.; Yang, Z.; Yang, J.; Wu, Y.; Wei, D. Facile syntheses of 3-dimension graphene aerogel and nanowalls with high specific surface areas. Chem. Phys. Lett. 2017, 677, 7–12. [Google Scholar] [CrossRef]
- Cygan, T.; Wozniak, J.; Kostecki, M.; Petrus, M.; Jastrzebska, A.; Ziemkowska, W.; Olszyna, A. Mechanical properties of graphene oxide reinforced alumina matrix composites. Ceram. Int. 2017, 43, 6180–6186. [Google Scholar] [CrossRef]
- Bo, T.; Zhengwei, W.; Huang, W.; Sen, L.; Tingting, M.; Haogang, Y.; Xufei, L. RGO and Three-Dimensional Graphene Networks Co-modified TIMs with High Performances. Nanoscale Res. Lett. 2017, 12, 527. [Google Scholar] [CrossRef] [PubMed]
- Zhong, J.; Zhou, G.; He, P.; Yang, Z.; Jia, D. 3D printing strong and conductive geo-polymer nanocomposite structures modified by graphene oxide. Carbon 2017, 117, 421–426. [Google Scholar] [CrossRef]
- Ding, J.; Huang, Y.; Han, T.; Wang, Y. Synthesis of functionalized graphene oxide nanoflakes using silane coupling agents: Reinforcement of cyanate ester/bismaleimide nanocomposites. High Perform. Polym. 2016, 28, 147–155. [Google Scholar] [CrossRef]
- Liu, C.; Yan, H.; Lv, Q.; Li, S.; Niu, S. Enhanced tribological properties of aligned reduced graphene oxide-Fe3O4@polyphosphazene/bismaleimides composites. Carbon 2016, 102, 145–153. [Google Scholar] [CrossRef]
- Tang, C.; Yan, H.; Li, S.; Li, M.; Chen, Z. Novel phosphorus-containing polyhedral Oligomeric Silsesquioxane functionalized Graphene oxide: Preparation and its performance on the mechanical and flame-retardant properties of Bismaleimide composite. J. Polym. Res. 2017, 24, 1–12. [Google Scholar] [CrossRef]
- McAllister, M.J.; Li, J.; Adamson, D.H.; Schniepp, H.C.; Abdala, A.A.; Liu, J.; Herrera-Alonso, M.; Milius, D.L.; Car, R.; Prud’Homme, R.K.; et al. Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem. Mater. 2007, 19, 4396–4404. [Google Scholar] [CrossRef]
- Ratha, S.; Rout, C.S. Supercapacitor Electrodes Based on Layered Tungsten Disulfide-Reduced Graphene Oxide Hybrids Synthesized by a Facile Hydrothermal Method. ACS Appl. Mater. Interfaces 2013, 5, 11427–11433. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.I.; Kwon, B.; Yoon, J.; Park, I.; Bang, G.S.; Park, Y.; Seo, Y.; Choi, S. Antibacterial Activities of Graphene Oxide Molybdenum Disulfide Nanocomposite Films. ACS Appl. Mater. Interfaces 2017, 9, 7908–7917. [Google Scholar] [CrossRef] [PubMed]
- Tu, C.; Lin, L.; Xiao, B.; Chen, Y. Highly efficient supercapacitor electrode with two-dimensional tungsten disulfide and reduced graphene oxide hybrid nanosheets. J. Power Sources 2016, 320, 78–85. [Google Scholar] [CrossRef]
- Choi, S.H.; Kang, Y.C. Sodium ion storage properties of WS2-decorated three-dimensional reduced graphene oxide microspheres. Nanoscale 2015, 7, 3965–3970. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.J.; Lee, B.J.; Kang, D.; Jang, Y.J.; Lee, J.S.; Shin, H.S. 2D materials-based photoelectrochemical cells: Combination of transition metal dichalcogenides and reduced graphene oxide for efficient charge transfer. FlatChem 2017, 4, 54–60. [Google Scholar] [CrossRef]
- Xu, L.Q.; Wang, L.; Zhang, B.; Lim, C.H.; Chen, Y.; Neoh, K.; Kang, E.; Fu, G.D. Functionalization of reduced graphene oxide nanosheets via stacking interactions with the fluorescent and water-soluble perylene bisimide-containing polymers. Polymer 2011, 52, 2376–2383. [Google Scholar] [CrossRef]
- Kuilla, T.; Bhadra, S.; Yao, D.; Kim, N.H.; Bose, S.; Lee, J.H. Recent advances in graphene based polymer composites. Prog. Polym. Sci. 2010, 35, 1350–1375. [Google Scholar] [CrossRef]
- Bao, C.; Guo, Y.; Song, L.; Kan, Y.; Qian, X.; Hu, Y. In situ preparation of functionalized graphene oxide/epoxy nanocomposites with effective reinforcements. J. Mater. Chem. 2011, 21, 13290–13298. [Google Scholar] [CrossRef]
- Cano, M.; Khan, U.; Sainsbury, T.; O’Neill, A.; Wang, Z.; McGovern, I.T.; Maser, W.K.; Benito, A.M.; Coleman, J.N. Improving the mechanical properties of graphene oxide based materials by covalent attachment of polymer chains. Carbon 2013, 52, 363–371. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J.; Chen, M.; Qu, H.; Zhang, X.; Wei, H.; Luo, Z.; Colorado, H.A.; Wei, S.; Guo, Z. Interfacial polymerized polyaniline/graphite oxide nanocomposites toward electrochemical energy storage. Polymer 2012, 53, 5953–5964. [Google Scholar] [CrossRef]
- Posudievsky, O.Y.; Khazieieva, O.A.; Cherepanov, V.V.; Dovbeshko, G.I.; Shkavro, A.G.; Koshechko, V.G.; Pokhodenko, V.D. Improved dispersant-free liquid exfoliation down to the graphene-like state of solvent-free mechanochemically delaminated bulk MoS2. J. Mater. Chem. C 2013, 1, 6411–6415. [Google Scholar] [CrossRef]
- Rout, C.S.; Joshi, P.D.; Kashid, R.V.; Joag, D.S.; More, M.A.; Simbeck, A.J.; Washington, M.; Nayak, S.K.; Late, D.J. Superior Field Emission Properties of Layered WS2-RGO Nanocomposites. Sci. Rep. 2013, 3, 3282. [Google Scholar] [CrossRef] [PubMed]
- Yan, H.; Li, S.; Jia, Y.; Ma, X.Y. Hyperbranched polysiloxane grafted graphene for improved tribological performance of bismaleimide composites. RSC Adv. 2015, 5, 12578–12582. [Google Scholar] [CrossRef]
- Sahu, M.; Narashimhan, L.; Prakash, O.; Raichur, A.M. Noncovalently Functionalized Tungsten Disulfide Nanosheets for Enhanced Mechanical and Thermal Properties of Epoxy Nanocomposites. ACS. Appl. Mater. Interfaces 2017, 16, 14347–14357. [Google Scholar] [CrossRef] [PubMed]
- Shneider, M.; Dodiuk, H.; Kenig, S.; Tenne, R. The Effect of Tungsten Sulfide Fullerene-Like Nanoparticles on the Toughness of Epoxy Adhesives. J. Adhes. Sci. Technol. 2010, 24, 1083–1095. [Google Scholar] [CrossRef]
- Xu, F.; Yan, C.; Shyng, Y.T.; Chang, H.; Xia, Y.; Zhu, Y. Ultra-toughened nylon 12 nanocomposites reinforced with IF-WS2. Nanotechnology 2014, 25, 325701–325710. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Yao, Z.; Zhou, J. Mechanical, thermal and dielectric properties of graphene oxide/polyimide resin composite. High Perform. Polym. 2016, 28, 1033–1042. [Google Scholar] [CrossRef]
- Chen, Z.; Yan, H.; Liu, T.; Niu, S. Nanosheets of MoS2 and reduced graphene oxide as hybrid fillers improved the mechanical and tribological properties of bismaleimide composites. Compos. Sci. Technol. 2016, 125, 47–54. [Google Scholar] [CrossRef]
- Liu, C.; Yan, H.; Chen, Z.; Yuan, L.; Lv, Q. Effect of surface-functionalized reduced graphene oxide on mechanical and tribological properties of bismaleimide composites. RSC Adv. 2015, 5, 46632–46639. [Google Scholar] [CrossRef]
- Wang, J.; Yang, S.; Huang, Y.; Tien, H.; Chin, W.; Ma, C.M. Preparation and properties of graphene oxide/polyimide composite films with low dielectric constant and ultrahigh strength via in situ polymerization. J. Mater. Chem. 2011, 21, 13569–13575. [Google Scholar] [CrossRef]
- Gao, Y.; Gu, A.; Jiao, Y.; Yang, Y.; Liang, G.; Hu, J.; Yao, W.; Yuan, L. High-performance hexagonal boron nitride/bismaleimide composites with high thermal conductivity, low coefficient of thermal expansion, and low dielectric loss. Polym. Adv. Technol. 2012, 23, 919–928. [Google Scholar] [CrossRef]
- Chen, H.; Ginzburg, V.V.; Yang, J.; Yang, Y.; Liu, W.; Huang, Y.; Du, L.; Chen, B. Thermal conductivity of polymer-based composites: Fundamentals and applications. Prog. Polym. Sci. 2016, 59, 41–85. [Google Scholar] [CrossRef]
Polymers | Fillers | Optimal Loading | Remarks | Reference |
---|---|---|---|---|
BMI | NH2-rGO/WS2 | 0.6 wt % | The flexural and impact strength of the composites increased by 62.6% and 91.3%, respectively, compared to the neat BMI | This paper |
BMI | GO | 0.15 wt % | The flexural and impact strength of the composites increased by 19.82% and 32.48%, respectively, compared to the neat BMI | [4] |
BMI | MAH-GO | 0.1 wt % | The flexural and impact strength of the composites increased by 37.48% and 77.28%, respectively, compared to the neat BMI | [4] |
BMI | MPTS-GO | - | The tensile and impact strength of the composites increased by 22.17% and 66.64%, respectively, compared to the neat BMI | [8] |
BMI | GNS-Fe3O4@PZM | 0.4 wt % | The flexural and impact strength of the composites increased by 31.3% and 61.3%, respectively, compared to the neat BMI | [16] |
BMI | P-POSS-GO | 0.8 wt % | The flexural and impact strength of the composites increased by 24.6% and 100.8%, respectively, compared to the neat BMI | [17] |
CE/BMI | FGONs | 1.0 wt % | The flexural and impact strengths reached optimum values of 110 MPa and 10.98 kJ m−2 | [15] |
Epoxy | WS2-PEI | 0.25 wt % | The fracture toughness increased by 82.98% and flexural strength increased by 65%, compared to the neat EP | [32] |
Epoxy | IF-WS2 | 0.5 wt % | The composite exhibited high shear and peel strength | [33] |
Nylon 12 | IF-WS2 | 2 wt % | The tensile strength and bending strength of the composites increased by 27% and 28%, respectively | [34] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, L.; Yan, H.; Chen, Z.; Liu, Q.; Feng, Y.; Ding, F.; Nie, Y. Amino Functionalization of Reduced Graphene Oxide/Tungsten Disulfide Hybrids and Their Bismaleimide Composites with Enhanced Mechanical Properties. Polymers 2018, 10, 1199. https://doi.org/10.3390/polym10111199
Guo L, Yan H, Chen Z, Liu Q, Feng Y, Ding F, Nie Y. Amino Functionalization of Reduced Graphene Oxide/Tungsten Disulfide Hybrids and Their Bismaleimide Composites with Enhanced Mechanical Properties. Polymers. 2018; 10(11):1199. https://doi.org/10.3390/polym10111199
Chicago/Turabian StyleGuo, Liulong, Hongxia Yan, Zhengyan Chen, Qi Liu, Yuanbo Feng, Fan Ding, and Yufeng Nie. 2018. "Amino Functionalization of Reduced Graphene Oxide/Tungsten Disulfide Hybrids and Their Bismaleimide Composites with Enhanced Mechanical Properties" Polymers 10, no. 11: 1199. https://doi.org/10.3390/polym10111199