Synthesis and Applications of Molecularly Imprinted Polymers Modified TiO2 Nanomaterials: A Review
Abstract
:1. Introduction
2. General Method for the Preparation of MIPs Modified TiO2 Nanomaterials
2.1. Surface Molecular Imprinting Technique
2.1.1. Graft Copolymerization
2.1.2. Sacrificial Carrier Method
2.1.3. Sol-Gel Polymerization
2.1.4. Sol-Hydrothermal Polymerization
2.2. Precipitation Polymerization
2.2.1. Liquid Deposition Method (LPD)
2.2.2. Seed Precipitation Polymerization
2.3. In Situ Polymerization
3. Application of TiO2 and Their Composites Based Molecularly Imprinted Polymers
3.1. Application in Photocatalytic Degradation
3.2. Applications of TiO2 Nanomaterials Based MIPs in Sensors
3.2.1. Applications of TiO2 Nanomaterials Based MIPs in Electrochemical Sensors
3.2.2. Applications of TiO2 Nanomaterials Based MIPs in Photoelectrochemical Sensors
3.3. Miscellaneous Applications of MIPs Modified TiO2 Nanomaterials in Other Fields
4. Conclusions and Outlook
Acknowledgments
Conflicts of Interest
List of Abbreviations
TiO2 | titanium dioxide |
MIPs | molecularly imprinted polymers |
NIPs | non- imprinted polymers |
MMIPs | magnetic-molecular imprinted polymers |
CNTs | carbon nanotubes |
SMIT | surface molecular imprinting technique |
MAA | methacrylic acid |
BSM | bensulfuron-methyl |
KH570 | 3-(trimethoxysilyl) propylmethacrylate |
Cys | cysteine |
Cys@ZnS:TiO2 NPs | cysteine derivative modified TiO2 doped ZnS nanoparticle |
AA | acrylamide |
CMC | carboxymethyl cellulose |
PVA | polyvinyl alcohol |
APS | ammonium persulfate |
2,4-D | 2,4-dichlorophenoxyacetic acid |
NBD | nitrobenzoxadiazole |
TCPO | bis(2,4,6-trichlorophenyl)oxalate |
APTS | 3-aminopropyltriethoxysilane |
GFM | grafting-from |
DBT | dibenzothiophene |
4-VP | 4-vinylpridine |
EGDMA | ethylene glycol dimethacrylate |
β-CD | β-cyclodextrin |
BPA | bisphenol A |
QCM | quartz crystal microbalance |
GPTMS | glycidoxy propyltrimethoxysilane |
MIPs/Fe–TiO2 | molecularly imprinted inorganic-framework Fe–TiO2 composites |
AOII | acid orange II |
4-NP | 4-nitrophenol |
2-NP | 2-nitrophenol |
LPD | liquid deposition method |
TC | tetracycline hydrochloride |
GA | L-glutamic acid |
EDMA | ethylene glycol dimethacrylate |
OPDA | ortho-phenylenediamine |
4-CP | 4-chlorophenol |
2-CP | 2-chlorophenol |
EEs | Environmental Estrogens |
RhB | Rhodamine B |
PDA | phenylenediamine |
PFCs | perfluorinated chemicals |
PFOA | perfluorooctanoic acid |
PFOS | perfluorooctane sulfonate |
CTNC | chitosan-TiO2 nanocomposite |
RB | Rose Bengal |
AIBN | azobisisobutyronitrile |
P25 | a kind of TiO2 particles |
CTAB | cetrimonium bromide |
DEP | diethyl phthalate |
IMIPs | inorganic molecularly imprinted polymers |
DIMP | diisopropyl methylphosphonate |
DEHMP | diethylhydroxymethylphosphonate |
XRD | X-ray diffraction |
Phi-NO2 | O,O-dimethyl-(2,4-dichlorophenoxyacetoxyl)(30-nitrobenyl)methinephosphonate |
APAP | acetaminophen |
MIFs | molecularly imprinted films |
BPA | bisphenol A |
PEC | photochemistry |
o-PD | o-phenylenediamine |
MC-LR | microcystin |
Pro | propazine |
Sim | simazine |
Atr | Atrazine |
HPLC | high performance liquid chromatography |
SPE | solid phase extraction |
AAPTS | 3-(2-aminoethylamino) propyltrimethoxysilane |
References
- Teh, C.M.; Mohamed, A.R. Roles of titanium dioxide and ion-doped titanium dioxide on photocatalytic degradation of organic pollutants (phenolic compounds and dyes) in aqueous solutions: A review. J. Alloys Compd. 2011, 509, 1648–1660. [Google Scholar] [CrossRef]
- Foster, H.A.; Ditta, I.B.; Varghese, S.; Steele, A. Photocatalytic disinfection using titanium dioxide: Spectrum and mechanism of antimicrobial activity. Appl. Microbiol. Biotechnol. 2011, 90, 1847–1868. [Google Scholar] [CrossRef] [PubMed]
- Lai, C.; Zhou, X.; Huang, D.; Zeng, G.; Cheng, M.; Qin, L.; Yi, H.; Zhang, C.; Xu, P.; Zhou, C.; et al. A review of titanium dioxide and its highlighted application in molecular imprinting technology in environment. J. Taiwan Inst. Chem. Eng. 2018, 91, 517–531. [Google Scholar] [CrossRef]
- Kubacka, A.; Fernández-García, M.; Cerrada, M.L.; Fernández-García, M. Titanium Dioxide–Polymer Nanocomposites with Advanced Properties; Springer: Berlin/Heidelberg, Germany, 2012; pp. 119–149. [Google Scholar]
- Jo, C.W.; Hee, Y.S.; Faiz, A. Molecular imprinted polymers for separation science: A review of reviews. J. Sep. Sci. 2013, 36, 609–628. [Google Scholar]
- Yang, S.; Wang, Y.; Jiang, Y.; Li, S.; Liu, W. Molecularly imprinted polymers for the identification and separation of chiral drugs and biomolecules. Polymers 2016, 8, 216. [Google Scholar] [CrossRef]
- Mosbach, K.; Ramstrom, O. The emerging technique of molecular imprinting and its future impact on biotechnology. Bio-Technology (New York) 1996, 14, 163–170. [Google Scholar] [CrossRef]
- Beyazit, S.; Bui, B.T.S.; Haupt, K.; Gonzato, C. Molecularly imprinted polymer nanomaterials and nanocomposites by controlled/living radical polymerization. Prog. Polym. Sci. 2016, 62, 1–21. [Google Scholar] [CrossRef]
- Niu, M.; Pham-Huy, C.; He, H. Core-shell nanoparticles coated with molecularly imprinted polymers: A review. Microchim. Acta 2016, 183, 2677–2695. [Google Scholar] [CrossRef]
- Gui, R.; Jin, H.; Guo, H.; Wang, Z. Recent advances and future prospects in molecularly imprinted polymers-based electrochemical biosensors. Biosens. Bioelectron. 2018, 100, 56–70. [Google Scholar] [CrossRef] [PubMed]
- Yáñez-Sedeño, P.; Campuzano, S.; Pingarrón, J.M. Electrochemical sensors based on magnetic molecularly imprinted polymers: A review. Anal. Chim. Acta 2017, 960, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Dai, H.; Xiao, D.L.; He, H.; Li, H.; Yuan, D.H.; Zhang, C. Synthesis and analytical applications of molecularly imprinted polymers on the surface of carbon nanotubes: A review. Microchim. Acta 2015, 182, 893–908. [Google Scholar] [CrossRef]
- Chen, L.; Xu, S.; Li, J. Recent advances in molecular imprinting technology: Current status, challenges and highlighted applications. Chem. Soc. Rev. 2011, 40, 2922–2942. [Google Scholar] [CrossRef] [PubMed]
- Wackerlig, J.; Schirhagl, R. Applications of molecularly imprinted polymer nanoparticles and their advances toward industrial use: A review. Anal. Chem. 2016, 88, 250–261. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Zhang, X.; Ma, Y.; Bai, X.; Chen, X.; Liu, J.; Pan, J. Immobilization of boronic acid and vinyl-functionalized multiwalled carbon nanotubes in hybrid hydrogel via light-triggered chemical polymerization for aqueous phase molecular recognition. Chem. Eng. J. 2019, 355, 740–751. [Google Scholar] [CrossRef]
- Zhang, W.; Duan, D.; Liu, S.; Zhang, Y.; Leng, L.; Li, X.; Chen, N.; Zhang, Y. Metal-organic framework-based molecularly imprinted polymer as a high sensitive and selective hybrid for the determination of dopamine in injections and human serum samples. Biosens. Bioelectron. 2018, 118, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Hassanzadeh, J.; Khataee, A.; Oskoei, Y.M.; Fattahi, H.; Bagheri, N. Selective chemiluminescence method for the determination of trinitrotoluene based on molecularly imprinted polymer-capped zno quantum dots. New J. Chem. 2017, 41, 10659–10667. [Google Scholar] [CrossRef]
- Usha, S.P.; Gupta, B.D. Urinary p-cresol diagnosis using nanocomposite of zno/mos2 and molecular imprinted polymer on optical fiber based lossy mode resonance sensor. Biosens. Bioelectron. 2018, 101, 135–145. [Google Scholar] [CrossRef] [PubMed]
- Zhong, M.; Wang, Y.-H.; Wang, L.; Long, R.-Q.; Chen, C.-L. Synthesis and characterization of magnetic molecularly imprinted polymers for enrichment of sanguinarine from the extraction wastewater of m. Cordata. J. Ind. Eng. Chem. 2018, 66, 107–115. [Google Scholar] [CrossRef]
- Wang, H.; Xu, Q.; Wang, J.; Du, W.; Liu, F.; Hu, X. Dendrimer-like amino-functionalized hierarchical porous silica nanoparticle: A host material for 2,4-dichlorophenoxyacetic acid imprinting and sensing. Biosens. Bioelectron. 2018, 100, 105–114. [Google Scholar] [CrossRef] [PubMed]
- Lei, Y.; Zhou, T.; Shen, X. Molecular imprinting in particle-stabilizedemulsions: Enlarging template size from smallmolecules to proteins and cells. Mol. Impr. 2016, 2, 8–16. [Google Scholar]
- Feinle, A.; Elsaesser, M.S.; Huesing, N. Sol-gel synthesis of monolithic materials with hierarchical porosity. Chem. Soc. Rev. 2016, 45, 3377–3399. [Google Scholar] [CrossRef] [PubMed]
- Daghrir, R.; Drogui, P.; Robert, D. Modified tio2 for environmental photocatalytic applications: A review. Ind. Eng. Chem. Res. 2013, 52, 3581–3599. [Google Scholar] [CrossRef]
- Van Nostrum, C.F. Molecular imprinting: A new tool for drug innovation. Drug Discov. Today Technol. 2005, 2, 119–124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, S.M.; Tripathi, M. A review of tio2 nanoparticles. Chin. Sci. Bull. 2011, 56, 1639–1657. [Google Scholar] [CrossRef]
- Zhang, X.F.; Du, X.Z. Protein surface imprinting technology. Prog. Chem. 2016, 28, 149–162. [Google Scholar]
- Shiomi, T.; Matsui, M.; Mizukami, F.; Sakaguchi, K. A method for the molecular imprinting of hemoglobin on silica surfaces using silanes. Biomaterials 2005, 26, 5564–5571. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhou, Y.; Sokolov, J.; Rigas, B.; Levon, K.; Rafailovich, M. A potentiometric protein sensor built with surface molecular imprinting method. Biosens. Bioelectron. 2008, 24, 162–166. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Ulbricht, M. A highly selective protein adsorber via two-step surface-initiated molecular imprinting utilizing a multi-functional polymeric scaffold on a macroporous cellulose membrane. RSC Adv. 2017, 7, 11012–11019. [Google Scholar] [CrossRef] [Green Version]
- Bossi, A.; Piletsky, S.A.; Piletska, E.V.; Righetti, P.G.; Turner, A.P.F. Surface-grafted molecularly imprinted polymers for protein recognition. Anal. Chem. 2001, 73, 5281–5286. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yang, H.H.; You, Q.H.; Zhuang, Z.X.; Wang, X.R. Protein recognition via surface molecularly imprinted polymer nanowires. Anal. Chem. 2006, 78, 317–320. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Qin, L.; He, X.-W.; Li, W.-Y.; Zhang, Y.-K. Novel surface modified molecularly imprinted polymer using acryloyl-beta-cyclodextrin and acrylamide as monomers for selective recognition of lysozyme in aqueous solution. J. Chromatogr. A 2009, 1216, 4560–4567. [Google Scholar] [CrossRef] [PubMed]
- Yao, Q.Z.; Zhou, Y.M.; Sun, Y.Q.; Ye, X.Y. Synthesis of tio(2) hybrid molecular imprinted polymer for ethofumesate linked by silane coupling agent. J. Inorg. Organomet. Polym. Mater. 2008, 18, 477–484. [Google Scholar] [CrossRef]
- Roy, E.; Patra, S.; Madhuri, R.; Sharma, P.K. A single solution for arsenite and arsenate removal from drinking water using cysteine@zns:Tio2 nanoparticle modified molecularly imprinted biofouling-resistant filtration membrane. Chem. Eng. J. 2016, 304, 259–270. [Google Scholar] [CrossRef]
- Yang, L.; Guan, G.; Wang, S.; Zhang, Z. Nano-anatase-enhanced peroxyoxalate chemiluminescence and its sensing application. J. Phys. Chem. C 2012, 116, 3356–3362. [Google Scholar] [CrossRef]
- Xu, W.Z.; Zhou, W.; Xu, P.P.; Pan, J.M.; Wu, X.Y.; Yan, Y.S. A molecularly imprinted polymer based on tio2 as a sacrificial support for selective recognition of dibenzothiophene. Chem. Eng. J. 2011, 172, 191–198. [Google Scholar] [CrossRef]
- Li, H.; Li, G.; Li, Z.; Lu, C.; Li, Y.; Tan, X. Surface imprinting on nano-tio2 as sacrificial material for the preparation of hollow chlorogenic acid imprinted polymer and its recognition behavior. Appl. Surf. Sci. 2013, 264, 644–652. [Google Scholar] [CrossRef]
- Wang, Z.C.; Helmersson, U.; Kall, P.O. Optical properties of anatase tio2 thin films prepared by aqueous sol-gel process at low temperature. Thin Solid Films 2002, 405, 50–54. [Google Scholar] [CrossRef]
- Marx, S.; Zaltsman, A.; Turyan, I.; Mandler, D. Parathion sensor based on molecularly imprinted sol-gel films. Anal. Chem. 2004, 76, 120–126. [Google Scholar] [CrossRef]
- Takahara, N.; Wang, T.; Lee, S.-W. Selective adsorption of molecules by imprinted titania nanohybrid thin films with anchored cyclodextrin host molecules. Kobunshi Ronbunshu 2013, 70, 214–220. [Google Scholar] [CrossRef]
- Wei, S.; Liu, H.; He, C.; Liang, Y. Molecularly imprinted tio2/wo3-coated magnetic nanocomposite for photocatalytic degradation of 4-nitrophenol under visible light. Aust. J. Chem. 2016, 69, 638–644. [Google Scholar] [CrossRef]
- Luo, X.; Deng, F.; Min, L.; Luo, S.; Guo, B.; Zeng, G.; Au, C. Facile one-step synthesis of inorganic-framework molecularly imprinted tio2/wo3 nanocomposite and its molecular recognitive photocatalytic degradation of target contaminant. Environ. Sci. Technol. 2013, 47, 7404–7412. [Google Scholar] [CrossRef] [PubMed]
- Cai, Z.-F.; Dai, H.-J.; Si, S.-H.; Ren, F.-L. Molecular imprinting and adsorption of metallothionein on nanocrystalline titania membranes. Appl. Surf. Sci. 2008, 254, 4457–4461. [Google Scholar] [CrossRef]
- Li, C.; Gao, J.; Pan, J.; Zhang, Z.; Yan, Y. Synthesis, characterization, and adsorption performance of pb(ii)-imprinted polymer in nano-tio2 matrix. J. Environ. Sci. 2009, 21, 1722–1729. [Google Scholar] [CrossRef]
- Song, Y.; Rong, C.; Shang, J.; Wang, Y.; Zhang, Y.; Yu, K. Synthesis of an inorganic-framework molecularly imprinted fe-doped tio2 composite and its selective photo-fenton-like degradation of acid orange ii. J. Chem. Technol. Biotechnol. 2017, 92, 2038–2049. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, R.; Liu, C.; Luo, S.; Yang, L.; Sui, F.; Teng, Y.; Yang, R.; Cai, Q. Enhanced photocatalysis on tio2 nanotube arrays modified with molecularly imprinted tio2 thin film. J. Hazard. Mater. 2010, 182, 912–918. [Google Scholar] [CrossRef] [PubMed]
- Deng, F.; Liu, Y.; Luo, X.; Wu, S.; Luo, S.; Au, C.; Qi, R. Sol-hydrothermal synthesis of inorganic-framework molecularly imprinted tio2/sio2 nanocomposite and its preferential photocatalytic degradation towards target contaminant. J. Hazard. Mater. 2014, 278, 108–115. [Google Scholar] [CrossRef] [PubMed]
- Deng, F.; Zhao, X.; Pei, X.; Luo, X.; Li, W.; Au, C. Sol-hydrothermal synthesis of inorganic-framework molecularly imprinted tio2 nanoparticle and its enhanced photocatalytic activity for degradation of target pollutant. Sci. Adv. Mater. 2016, 8, 1079–1085. [Google Scholar] [CrossRef]
- Jing, T.; Gao, X.D.; Wang, P.; Wang, Y.; Lin, Y.F.; Hu, X.Z.; Hao, Q.L.; Zhou, Y.K.; Mei, S.R. Determination of trace tetracycline antibiotics in foodstuffs by liquid chromatography–tandem mass spectrometry coupled with selective molecular-imprinted solid-phase extraction. Anal. Bioanal.Chem. 2009, 393, 2009–2018. [Google Scholar] [CrossRef] [PubMed]
- Yoshimatsu, K.; Reimhult, K.; Krozer, A.; Mosbach, K.; Sode, K.; Ye, L. Uniform molecularly imprinted microspheres and nanoparticles prepared by precipitation polymerization: The control of particle size suitable for different analytical applications (vol 584, pg 112, 2007). Anal. Chim. Acta 2010, 657, 215. [Google Scholar] [CrossRef]
- Wang, J.F.; Cormack, P.A.G.; Sherrington, D.C.; Khoshdel, E. Monodisperse, molecularly imprinted polymer microspheres prepared by precipitation polymerization for affinity separation applications. Angew. Chem. Int. Edit. 2003, 42, 5336–5338. [Google Scholar] [CrossRef] [PubMed]
- Cacho, C.; Turiel, E.; Martin-Esteban, A.; Perez-Conde, C.; Camara, C. Clean-up of triazines in vegetable extracts by molecularly-imprinted solid-phase extraction using a propazine-imprinted polymer. Anal. Bioanal.Chem. 2003, 376, 491–496. [Google Scholar] [CrossRef] [PubMed]
- Sambe, H.; Hoshina, K.; Moaddel, R.; Wainer, I.W.; Haginaka, J. Uniformly-sized, molecularly imprinted polymers for nicotine by precipitation polymerization. J. Chromatogr. A 2006, 1134, 88–94. [Google Scholar] [CrossRef] [PubMed]
- Li, G.L.; Moehwald, H.; Shchukin, D.G. Precipitation polymerization for fabrication of complex core-shell hybrid particles and hollow structures. Chem. Soc. Rev. 2013, 42, 3628–3646. [Google Scholar] [CrossRef] [PubMed]
- Maki, H.; Okumura, Y.; Ikuta, H.; Mizuhata, M. Ionic equilibria for synthesis of tio2 thin films by the liquid-phase deposition. J. Phys. Chem. C 2014, 118, 11964–11974. [Google Scholar] [CrossRef]
- Shen, X.; Zhu, L.; Liu, G.; Tang, H.; Liu, S.; Li, W. Photocatalytic removal of pentachlorophenol by means of an enzyme-like molecular imprinted photocatalyst and inhibition of the generation of highly toxic intermediates. New J. Chem. 2009, 33, 2278–2285. [Google Scholar] [CrossRef]
- Wang, C.; Li, C.; Wang, F.; Wang, C. Phosphonate electrochemical recognition by molecularly imprinted deposited film. Appl. Surf. Sci. 2006, 253, 2282–2288. [Google Scholar] [CrossRef]
- Wang, C.; Li, C.; Wei, L.; Wang, C. Electrochemical sensor for acetaminophen based on an imprinted tio2 thin film prepared by liquid phase deposition. Microchim. Acta 2007, 158, 307–313. [Google Scholar] [CrossRef]
- Wang, H.; Wu, X.; Zhao, H.; Quan, X. Enhanced photocatalytic degradation of tetracycline hydrochloride by molecular imprinted film modified tio2 nanotubes. Chin. Sci. Bull. 2012, 57, 601–605. [Google Scholar] [CrossRef]
- Feng, L.A.; Liu, Y.J.; Hu, J.M. Molecularly imprinted tio2 thin film by liquid phase deposition for the determination of l-glutamic acid. Langmuir 2004, 20, 1786–1790. [Google Scholar] [CrossRef] [PubMed]
- Tatemichi, M.; Sakamoto, M.A.; Mizuhata, M.; Deki, S.; Takeuchi, T. Protein-templated organic/inorganic hybrid materials prepared by liquid-phase deposition. J. Am. Chem. Soc. 2007, 129, 10906. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Lu, H.; Chen, L.; Wang, X. Molecularly imprinted tio2 hybridized magnetic fe3o4 nanoparticles for selective photocatalytic degradation and removal of estrone. RSC Adv. 2014, 4, 45266–45274. [Google Scholar] [CrossRef]
- Yong, L.; Yin, X.F.; Chen, F.R.; Yang, H.H.; Zhuang, Z.X.; Wang, X.R. Synthesis of magnetic molecularly imprinted polymer nanowires using a nanoporous alumina template. Macromolecules 2006, 39, 4497–4499. [Google Scholar]
- Huang, Z.J.; Zhang, Z.M.; Xia, Q.; Li, C.L.; Yun, Y.B. Surface molecularly imprinted polymer microspheres based on nano-tio2 for selective recognition of kaempferol. J. Appl. Polym. Sci. 2017, 134. [Google Scholar] [CrossRef]
- Rauh, A.; Honold, T.; Karg, M. Seeded precipitation polymerization for the synthesis of gold-hydrogel core-shell particles: The role of surface functionalization and seed concentration. Colloid Polym. Sci. 2016, 294, 37–47. [Google Scholar] [CrossRef]
- Du, T.; Cheng, J.; Wu, M.; Wang, X.; Zhou, H.; Cheng, M. An in situ immobilized pipette tip solid phase microextraction method based on molecularly imprinted polymer monolith for the selective determination of difenoconazole in tap water and grape juice. J. Chromatogr. B 2014, 951–952, 104. [Google Scholar] [CrossRef] [PubMed]
- Moein, M.M.; Javanbakht, M.; Akbari-Adergani, B. Molecularly imprinted polymer cartridges coupled on-line with high performance liquid chromatography for simple and rapid analysis of dextromethorphan in human plasma samples. J. Chromatogr. B 2011, 879, 777–782. [Google Scholar] [CrossRef] [PubMed]
- Corcione, C.E.; Striani, R.; Frigione, M. Organic–inorganic uv-cured methacrylic-based hybrids as protective coatings for different substrates. Prog. Org. Coat. 2014, 77, 1117–1125. [Google Scholar] [CrossRef]
- Lee, S.W.; Park, J.W.; Park, C.H.; Lim, D.H.; Kim, H.J.; Song, J.Y.; Lee, J.H. Uv-curing and thermal stability of dual curable urethane epoxy adhesives for temporary bonding in 3d multi-chip package process. Int. J. Adhes. Adhes. 2013, 44, 138–143. [Google Scholar] [CrossRef]
- Nilsson, J.; Spégel, P.; Nilsson, S. Molecularly imprinted polymer formats for capillary electrochromatography. J. Chromatogr. B 2004, 804, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.; Zhu, L.; Li, J.; Tang, H. Synthesis of molecular imprinted polymer coated photocatalysts with high selectivity. Chem. Commun. 2007, 1163–1165. [Google Scholar] [CrossRef] [PubMed]
- Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Cai, Q.; Li, H.; Cui, Y.; Wang, H. A review on nanotube film photocatalysts prepared by liquid-phase deposition. Int. J. Photoenergy 2012, 2012, 4651–4657. [Google Scholar] [CrossRef]
- Zhang, J.; Xiao, X.; Nan, J. Hydrothermal-hydrolysis synthesis and photocatalytic properties of nano-tio2 with an adjustable crystalline structure. J. Hazard. Mater. 2010, 176, 617–622. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.K.; Fen, S.K.; Chao, H.P.; Liu, S.S.; Huang, F.C. Effects of pore structure and surface chemical characteristics on the adsorption of organic vapors on titanate nanotubes. Adsorption 2012, 18, 349–357. [Google Scholar] [CrossRef]
- Pelaez, M.; Nolan, N.T.; Pillai, S.C.; Seery, M.K.; Falaras, P.; Kontos, A.G.; Dunlop, P.S.M.; Hamilton, J.W.J.; Byrne, J.A.; O’Shea, K. A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl. Catal. B 2012, 125, 331–349. [Google Scholar] [CrossRef] [Green Version]
- Hoffmann, M.R.; Martin, S.T.; Choi, W.; Bahnemann, D.W. Environmental applications of semiconductor photocatalysis. Chem. Rev. 1995, 95, 69–96. [Google Scholar] [CrossRef]
- Bouarioua, A.; Zerdaoui, M. Photocatalytic activities of tio2 layers immobilized on glass substrates by dip-coating technique toward the decolorization of methyl orange as a model organic pollutant. J. Environ. Chem. Eng. 2017, 5, 1565–1574. [Google Scholar] [CrossRef]
- Xiang, Q.; Yu, J.; Jaroniec, M. Tunable photocatalytic selectivity of tio2 films consisted of flower-like microspheres with exposed {001} facets. Chem. Commun. 2011, 47, 4532. [Google Scholar] [CrossRef] [PubMed]
- Deng, F.; Li, Y.; Luo, X.; Yang, L.; Tu, X. Preparation of conductive polypyrrole/tio 2 nanocomposite via surface molecular imprinting technique and its photocatalytic activity under simulated solar light irradiation. Colloid Surf. A 2012, 395, 183–189. [Google Scholar] [CrossRef]
- Ng, H.K.M.; Leo, C.P.; Abdullah, A.Z. Selective removal of dyes by molecular imprinted tio2 nanoparticles in polysulfone ultrafiltration membrane. J. Environ. Chem. Eng. 2017, 5, 3991–3998. [Google Scholar]
- Zhang, C.; Chen, H.; Ma, M.; Yang, Z. Facile synthesis of magnetically recoverable fe3o4/al2o3/molecularly imprinted tio2 nanocomposites and its molecular recognitive photocatalytic degradation of target contaminant. J. Mol. Catal. A Chem. 2015, 402, 10–16. [Google Scholar] [CrossRef]
- Wu, Y.; Dong, Y.; Xia, X.; Liu, X.; Li, H. Facile synthesis of n–f codoped and molecularly imprinted tio2 for enhancing photocatalytic degradation of target contaminants. Appl. Surf. Sci. 2016, 364, 829–836. [Google Scholar] [CrossRef]
- Shen, X.; Zhu, L.; Liu, G.; Yu, H.; Tang, H. Enhanced photocatalytic degradation and selective removal of nitrophenols by using surface molecular imprinted titania. Environ. Sci. Technol. 2008, 42, 1687–1692. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Li, Y.; Wang, Q.; Wang, C.; Wang, P.; Mao, K. Performance evaluation and application of surface-molecular-imprinted polymer-modified tio2 nanotubes for the removal of estrogenic chemicals from secondary effluents. Environ. Sci. Pollut. Res. 2013, 20, 1431–1440. [Google Scholar] [CrossRef] [PubMed]
- He, M.Q.; Bao, L.L.; Sun, K.Y.; Zhao, D.X.; Li, W.B.; Xia, J.X.; Li, H.M. Synthesis of molecularly imprinted polypyrrole/titanium dioxide nanocomposites and its selective photocatalytic degradation of rhodamine b under visible light irradiation. Express Polym. Lett. 2014, 8, 850–861. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Zhu, J.; Liu, X.; Li, H. A convenient approach of mip/co-tio2 nanocomposites with highly enhanced photocatalytic activity and selectivity under visible light irradiation. RSC Adv. 2016, 6, 69326–69333. [Google Scholar] [CrossRef]
- Wu, Y.; Li, Y.; Tian, A.; Mao, K.; Liu, J. Selective removal of perfluorooctanoic acid using molecularly imprinted polymer-modified tio2 nanotube arrays. Int. J. Photoenergy 2016. [Google Scholar] [CrossRef]
- Li, S.; Fang, L.; Ye, M.M.; Zhang, Y. Enhanced adsorption of norfloxacin on modified tio2 particles prepared via surface molecular imprinting technique. Desalin. Water Treat. 2016, 57, 408–418. [Google Scholar]
- Shen, X.T.; Zhu, L.H.; Huang, C.X.; Tang, H.Q.; Yu, Z.W.; Deng, F. Inorganic molecular imprinted titanium dioxide photocatalyst: Synthesis, characterization and its application for efficient and selective degradation of phthalate esters. J. Mater. Chem. 2009, 19, 4843–4851. [Google Scholar] [CrossRef]
- De Escobar, C.C.; Moreno Ruiz, Y.P.; Zimnoch dos Santos, J.H.; Ye, L. Molecularly imprinted tio2 photocatalysts for degradation of diclofenac in water. Colloid Surf. A 2018, 538, 729–738. [Google Scholar]
- Ahmed, M.A.; Abdelbar, N.M.; Mohamed, A.A. Molecular imprinted chitosan-TiO2 nanocomposite for the selective removal of rose bengal from wastewater. Int. J. Biol. Macromol. 2018, 107, 1046–1053. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Lai, C.; Huang, D.; Zeng, G.; Chen, L.; Qin, L.; Xu, P.; Cheng, M.; Huang, C.; Zhang, C.; et al. Preparation of water-compatible molecularly imprinted thiol-functionalized activated titanium dioxide: Selective adsorption and efficient photodegradation of 2, 4-dinitrophenol in aqueous solution. J. Hazard. Mater. 2018, 346, 113–123. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; He, Q.; Wang, L.; Wang, X.; Dong, Q.; Huang, C. Preparation of magnetic multi-functional molecularly imprinted polymer beads for determining environmental estrogens in water samples. J. Hazard. Mater. 2013, 252–253, 57–63. [Google Scholar] [CrossRef]
- Liu, C.; Chang, V.W.; Gin, K.Y. Environmental toxicity of pfcs: An enhanced integrated biomarker assessment and structure-activity analysis. Environ. Toxicol. Chem. 2013, 32, 2226–2233. [Google Scholar] [CrossRef] [PubMed]
- Jian, J.-M.; Guo, Y.; Zeng, L.; Liu, L.-Y.; Lu, X.; Wang, F.; Zeng, E.Y. Global distribution of perfluorochemicals (pfcs) in potential human exposure source—A review. Environ. Int. 2017, 108, 51–62. [Google Scholar] [CrossRef] [PubMed]
- Deng, F.; Lu, X.Y.; Pei, X.L.; Luo, X.B.A.; Luo, S.L.; Dionysiou, D.D.; Au, C. Urea- and cetyltrimethyl ammonium bromide-assisted hydrothermal synthesis of mesoporous enzyme-like molecularly imprinted tio2 nanoparticles with molecular recognitive photocatalytic activity. Sci. Adv. Mater. 2016, 8, 1737–1744. [Google Scholar] [CrossRef]
- Sharabi, D.; Paz, Y. Preferential photodegradation of contaminants by molecular imprinting on titanium dioxide. Appl. Catal. B 2010, 95, 169–178. [Google Scholar] [CrossRef]
- Bagheri, H.; Pajooheshpour, N.; Afkhami, A.; Khoshsafar, H. Fabrication of a novel electrochemical sensing platform based on a core-shell nano-structured/molecularly imprinted polymer for sensitive and selective determination of ephedrine. RSC Adv. 2016, 6, 51135–51145. [Google Scholar] [CrossRef]
- Yang, Q.; Wu, X.; Peng, H.; Fu, L.; Song, X.; Li, J.; Xiong, H.; Chen, L. Simultaneous phase-inversion and imprinting based sensor for highly sensitive and selective detection of bisphenol a. Talanta 2018, 176, 595–603. [Google Scholar] [CrossRef] [PubMed]
- Thanhthuy, T.T.; Li, J.; Feng, H.; Cai, J.; Yuan, L.; Wang, N.; Cai, Q. Molecularly imprinted polymer modified tio 2 nanotube arrays for photoelectrochemical determination of perfluorooctane sulfonate (pfos). Sens. Actuators B 2014, 190, 745–751. [Google Scholar]
- Shi, H.; Zhao, G.; Liu, M.; Zhu, Z. A novel photoelectrochemical sensor based on molecularly imprinted polymer modified tio 2 nanotubes and its highly selective detection of 2,4-dichlorophenoxyacetic acid. Electrochem. Commun. 2011, 13, 1404–1407. [Google Scholar] [CrossRef]
- Lu, B.; Liu, M.; Shi, H.; Huang, X.; Zhao, G. A novel photoelectrochemical sensor for bisphenol a with high sensitivity and selectivity based on surface molecularly imprinted polypyrrole modified tio 2 nanotubes. Electroanalysis 2013, 25, 771–779. [Google Scholar] [CrossRef]
- Wang, P.; Dai, W.; Ge, L.; Yan, M.; Ge, S.; Yu, J. Visible light photoelectrochemical sensor based on au nanoparticles and molecularly imprinted poly(o-phenylenediamine)-modified tio2 nanotubes for specific and sensitive detection chlorpyrifos. Analyst 2013, 138, 939–945. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.L.; Gao, C.M.; Zhang, L.N.; Yan, M.; Yu, J.H.; Ge, S.G. Photoelectrochemical sensor based on molecularly imprinted film modified hierarchical branched titanium dioxide nanorods for chlorpyrifos detection. Sens. Actuators B Chem. 2017, 251, 1–8. [Google Scholar] [CrossRef]
- Wang, P.; Ge, L.; Li, M.; Li, W.; Li, L.; Wang, Y.; Yu, J. Photoelectrochemical sensor based on molecularly imprinted polymer-coated tio2 nanotubes for lindane specific recognition and detection. J. Inorg. Organomet. Polym. Mater. 2013, 23, 703–711. [Google Scholar] [CrossRef]
- Liu, M.C.; Ding, X.; Yang, Q.W.; Wang, Y.; Zhao, G.H.; Yang, N.J. A pm leveled photoelectrochemical sensor for microcystin-lr based on surface molecularly imprinted tio2@cnts nanostructure. J. Hazard. Mater. 2017, 331, 309–320. [Google Scholar] [CrossRef] [PubMed]
- Kimmel, D.W.; LeBlanc, G.; Meschievitz, M.E.; Cliffel, D.E. Electrochemical sensors and biosensors. Anal. Chem. 2012, 84, 685–707. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Yang, G.; Li, H.; Du, D.; Lin, Y. Electrochemical sensors and biosensors based on nanomaterials and nanostructures. Anal. Chem. 2015, 87, 230. [Google Scholar] [CrossRef] [PubMed]
- Teng, Y.; Fan, L.; Dai, Y.; Zhong, M.; Lu, X.; Kan, X. Electrochemical sensor for paracetamol recognition and detection based on catalytic and imprinted composite film. Biosens. Bioelectron. 2015, 71, 137–142. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Raskin, J.-P.; Lahem, D.; Krumpmann, A.; Decroly, A.; Debliquy, M. A formaldehyde sensor based on molecularly-imprinted polymer on a tio2 nanotube array. Sensors 2017, 17, 675. [Google Scholar] [CrossRef] [PubMed]
- Malitesta, C.; Mazzotta, E.; Picca, R.A.; Poma, A.; Chianella, I.; Piletsky, S.A. Mip sensors--the electrochemical approach. Anal. Bioanal. Chem. 2012, 402, 1827. [Google Scholar] [CrossRef] [PubMed]
- Sun, B.; Ai, S.Y. Fabrication and application of photoelectrochemical sensor. Progress in Chemistry 2014, 834–845. [Google Scholar]
- Gomi, M.; Osaki, Y.; Mori, M.; Sakagami, Y. Synergistic bactericidal effects of a sublethal concentration of didecyldimethylammonium chloride (ddac) and low concentrations of nonionic surfactants against staphylococcus aureus. Biocontrol Sci. 2012, 17, 175–181. [Google Scholar] [CrossRef] [PubMed]
- Yue, Z.; Lisdat, F.; Parak, W.J.; Hickey, S.G.; Tu, L.; Sabir, N.; Dorfs, D.; Bigall, N.C. Quantum-dot-based photoelectrochemical sensors for chemical and biological detection. ACS Appl. Mater. Interfaces 2013, 5, 2800–2814. [Google Scholar]
- Zhang, Z.-X.; Zhao, C.-Z. Progress of photoelectrochemical analysis and sensors. Chin. J. Anal. Chem. 2013, 41, 436–444. [Google Scholar] [CrossRef]
- Wang, G.; Xu, J.; Chen, H. Progress in the studies of photoetectrochemical sensors. Sci. China Ser. B Chem. 2009, 52, 1789–1800. [Google Scholar] [CrossRef]
- Wang, G.L.; Jiao, H.J.; Liu, K.L.; Wu, X.M.; Dong, Y.M.; Li, Z.J.; Zhang, C. A novel strategy for the construction of photoelectrochemical sensors based on quantum dots and electron acceptor: The case of dopamine detection. Electrochem. Commun. 2014, 41, 47–50. [Google Scholar] [CrossRef]
- Ma, W.; Han, D.; Gan, S.; Zhang, N.; Liu, S.; Wu, T.; Zhang, Q.; Dong, X.; Niu, L. Rapid and specific sensing of gallic acid with a photoelectrochemical platform based on polyaniline-reduced graphene oxide-tio2. Chem. Commun. 2013, 49, 7842. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.-N.; Dai, W.; Wen, Y.; Zhao, G. Efficient enantioselective degradation of the inactive (s)-herbicide dichlorprop on chiral molecular-imprinted tio2. Appl. Catal. B 2017, 212, 185–192. [Google Scholar] [CrossRef]
- Rezaei, B.; Irannejad, N.; Ensafi, A.A. 3d tio2 self-acting system based on dye-sensitized solar cell and g-c3n4/tio2-mip to enhanced photodegradation performance. Renew. Energy 2018, 123, 281–293. [Google Scholar] [CrossRef]
- Geng, H.R.; Miao, S.S.; Jin, S.F.; Yang, H. A newly developed molecularly imprinted polymer on the surface of tio2 for selective extraction of triazine herbicides residues in maize, water, and soil. Anal. Bioanal.Chem. 2015, 407, 8803–8812. [Google Scholar] [CrossRef] [PubMed]
- Khoddami, N.; Shemirani, F. A new magnetic ion-imprinted polymer as a highly selective sorbent for determination of cobalt in biological and environmental samples. Talanta 2016, 146, 244–252. [Google Scholar] [CrossRef] [PubMed]
Materials | Advantages | Disadvantages | Ref |
---|---|---|---|
TiO2/MIPs |
|
| [3,23,24,25] |
Template/Degraded Target | Monomer/Support/Synthesis Method | Characterization Techniques | Light Source | Absorption Amount of Degradation Target on MIPs | Reaction Rate Constant (k/min−1) | Ref |
---|---|---|---|---|---|---|
OPDA/2-NP, 4-NP | MAA/P25/SMIT | UV–vis, HRTEM, FTIR | 250 W Philips high-pressure mercury lamp | 0.84, 0.61 mg/g | 0.01073, 0.00706 | [84] |
2-NP, 4-NP | Ti(O-nBu)4/TiO2@WO3/Sol-gel | XRD, SEM, UV–vis | 300 W xenon lamp | 1.593, 0.139 mg/g | 0.00373 | [42] |
AOII | Ti(O-nBu)4/Fe-TiO2/Sol-gel | FESEM, EDS, XRD, UV–vis, FTIR | 500 W mercury lamp | 9.35 mg/g | 0.5861 | [45] |
9-AnCOOH | Ti(O-nBu)4/TiO2 NTs/Sol-gel | XRD, DRS, SEM, | 500W xenon arc lamp | 0.22 mg/g | 0.1046 | [46] |
TC | TiO2/LPD | ESEM, XRD | UV light irradiation | 0.065 mg/g | 0.00363 | [59] |
estrone | Fe3O4@SiO2@TiO2/LPD | TEM, FTIR, XRD | 20 W UV light | 2.62 mg/g | 0.069 | [62] |
17β-estradiol | MAA/TiO2 NTs/precipitation polymerization | SPE, UV–vis, FTIR, XRD | 8W mercury UV lamp | 10 ng/L–1000 mg/L | 0.0732 | [85] |
RhB | TiO2/SMIT | XRD, TEM, UV–vis | 500 W Xenon lamp | 3.40mg/g | 0.0158 | [86] |
RhB | OPDA/Co-TiO2/SMIT | XRD, FTIR, XPS, SEM, TEM, UV–vis DRS | 400 W metal halide lamp | 0.48 mg/g | 0.03606 | [87] |
PFOP | AA/TiO2 NTs/SMIT | XRD, FESEM, HPLC | 23 W UV-C light lamp | 0.812 𝜇g/cm2 | 0.0036 | [88] |
Norfloxacin | TiO2/SMIT | UV–vis | 300W UV lamp | 2.99 mg/g | 0.0632 | [89] |
2-NP, 4-NP | Ti(OBu)4/Ethanol TiO2/hydrothermal method | XRD, SEM, UV–vis DRS, XPS | 400 W metal halide lamp | 1.33, 0.80 mg/g | 0.05233, 0.03028 | [83] |
DEP | Al3+ doped TiO2@ SiO2/Sol-gel | XRD, TEM, FTIR | 200W UV lamp | 18.5 mg/g | 0.12 | [90] |
DIC | MAA/CuP25/precipitation polymerization | XRD, SEM, TEM | UV light irradiation | 8.6 mg/g | - | [91] |
RB | Ti(OH)4/CTNC/Sol-gel | SEM, XRD, FTIR | UV light irradiation | 79.356 mg/g | 0.0702 | [92] |
2,4-DNP | OPDA/TiO2/SMIT | FESEM, FTIR, XRD, UV-vis DRS | 300 W xenon lamp | 7.16 mg/g | 0.0026 | [93] |
Target (Analyze) | Monomer/Support/Synthesis Route | Techniques Used for Characterization | Detection Technique | Detection Range | LOD | Ref |
---|---|---|---|---|---|---|
ephedrine | MMA/Fe3O4@SiO2@TiO2/Sol-gel | FT-IR, XRD, SEM, TEM | EC | 0.0090–2.8 mM | 0.0036 mM | [99] |
Phi-NO2 | p-tert-butylcalix[6]arene ethanol/TiO2/LPD | XRD | EC | 0.1–50 mM | 0.04 μM | [57] |
APAP | p-tert-butylcalix[6]arene ethanol/TiO2/LPD | AFM, UV–vis | EC | 5–80 μM, 0.8–5 μM | 0.2 μM. | [58] |
BPA | p(AN-co-AA)/Ti-TiO2/SMIT | SEM, UV–vis, EDX | EC | 4.4–0.13 mM | 1.3 nM | [100] |
PFOS | Acrylamide/TiO2 NTs/UV polymerization | FTIR, FESEM | PEC | 0.5–10 μM | 86 ng/mL | [101] |
2,4-D | pyrrole/TiO2 NTs/electropolymerization | UV–vis DRS | PEC | 0.5–13 μM | 10 nM | [102] |
BPA | Pyrrole/TiO2 NTs/electropolymerization | UV–vis, XRD, SEM | PEC | 4.5–108 nM | 2.0 nM | [103] |
CPF | PoPD/TiO2NTs/electropolymerization | UV–vis, SEM | PEC | 0.05–10 mM | 0.96 nM | [104] |
CPF | TiO2NRs/hydrothermal method | SEM, TEM | PEC | 0.029–2.85 nM | 0.021 pM | [105] |
lindane | PoPD/TiO2 NTs/electropolymerization | UV-vis, SEM | PEC | 0.1–10 μM | 0.03 μM | [106] |
MC-LR | MWCNTs/Sol-gel | DRS, XRD, XPS, TEM, UV-vis | PEC | 1.0 pm–3.0 nM | 0.4 pM | [107] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, L.; Guan, J.; Xu, Q.; Yang, X.; Wang, J.; Hu, X. Synthesis and Applications of Molecularly Imprinted Polymers Modified TiO2 Nanomaterials: A Review. Polymers 2018, 10, 1248. https://doi.org/10.3390/polym10111248
Sun L, Guan J, Xu Q, Yang X, Wang J, Hu X. Synthesis and Applications of Molecularly Imprinted Polymers Modified TiO2 Nanomaterials: A Review. Polymers. 2018; 10(11):1248. https://doi.org/10.3390/polym10111248
Chicago/Turabian StyleSun, Lingna, Jie Guan, Qin Xu, Xiaoyu Yang, Juan Wang, and Xiaoya Hu. 2018. "Synthesis and Applications of Molecularly Imprinted Polymers Modified TiO2 Nanomaterials: A Review" Polymers 10, no. 11: 1248. https://doi.org/10.3390/polym10111248
APA StyleSun, L., Guan, J., Xu, Q., Yang, X., Wang, J., & Hu, X. (2018). Synthesis and Applications of Molecularly Imprinted Polymers Modified TiO2 Nanomaterials: A Review. Polymers, 10(11), 1248. https://doi.org/10.3390/polym10111248