Synthesis and Crosslinking of Polyether-Based Main Chain Benzoxazine Polymers and Their Gas Separation Performance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of PEG-Based Main Chain Benzoxazine Polymer
2.3. Crosslinking of PEG-Based Main Chain Benzoxazine Polymer
2.4. Characterization
2.4.1. Proton Nuclear Magnetic Resonance (1H-NMR)
2.4.2. Differential Scanning Calorimetry (DSC)
2.4.3. Thermalgravimetric Analysis (TGA)
2.4.4. Gas Separation Measurement
3. Results and Discussion
3.1. Synthesis and Characterization of PEG-Based Main Chain Benzoxazine Polymer
3.2. Characterization of Thermally Crosslinked PEG-Based Main Chain Benzoxazine Polymer
3.3. Gas Transport Properties of Crosslinked PEG-Based Main Chain Benzoxazine Polymer
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Pandey, P.; Chauhan, R.S. Membranes for gas separation. Prog. Polym. Sci. 2001, 26, 853–893. [Google Scholar] [CrossRef]
- Baker, R.W. Overview of membrane science and technology. In Membrane Technology and Applications; John Wiley & Sons, Ltd.: Chichester, UK, 2004; pp. 1–14. [Google Scholar]
- Robeson, L.M. The upper bound revisited. J. Membr. Sci. 2008, 320, 390–400. [Google Scholar] [CrossRef]
- Charmette, C.; Sanchez, J.; Gramain, P.; Masquelez, N. Structural characterization of poly(ethylene oxide-co-epichlorohydrin) membranes and relation with gas permeation properties. J. Membr. Sci. 2009, 344, 275–280. [Google Scholar] [CrossRef]
- Rahman, M.M.; Filiz, V.; Shishatskiy, S.; Abetz, C.; Neumann, S.; Bolmer, S.; Khan, M.M.; Abetz, V. Pebax® with peg functionalized poss as nanocomposite membranes for co2 separation. J. Membr. Sci. 2013, 437, 286–297. [Google Scholar] [CrossRef]
- Lin, H.; Van Wagner, E.; Freeman, B.D.; Toy, L.G.; Gupta, R.P. Plasticization-enhanced hydrogen purification using polymeric membranes. Science 2006, 311, 639–642. [Google Scholar] [CrossRef] [PubMed]
- Tena, A.; Rangou, S.; Shishatskiy, S.; Filiz, V.; Abetz, V. Claisen thermally rearranged (ctr) polymers. Sci. Adv. 2016, 2. [Google Scholar] [CrossRef] [PubMed]
- Polotskaya, G.; Guliy, N.; Goikhman, M.; Podeshvo, I.; Brozova, L.; Pientka, Z. Structure and gas transport properties of polybenzoxazinoneimides with biquinoline units in the backbone. Macromol. Symp. 2015, 348, 44–53. [Google Scholar] [CrossRef]
- Matteucci, S.; Yampolskii, Y.; Freeman, B.D.; Pinnau, I. Transport of gases and vapors in glassy and rubbery polymers. In Materials Science of Membranes for Gas and Vapor Separation; John Wiley & Sons, Ltd.: Chichester, UK, 2006; pp. 1–47. [Google Scholar]
- Demir, K.D.; Tasdelen, M.A.; Uyar, T.; Kawaguchi, A.W.; Sudo, A.; Endo, T.; Yagci, Y. Synthesis of polybenzoxazine/clay nanocomposites by in situ thermal ring-opening polymerization using intercalated monomer. J. Polym. Sci. Part A Polym. Chem. 2011, 49, 4213–4220. [Google Scholar] [CrossRef]
- Dogan Demir, K.; Kiskan, B.; Yagci, Y. Thermally curable acetylene-containing main-chain benzoxazine polymers via sonogashira coupling reaction. Macromolecules 2011, 44, 1801–1807. [Google Scholar] [CrossRef]
- Agag, T.; Geiger, S.; Ishida, H. Chapter 13-thermal properties enhancement of polybenzoxazines: The role of additional non-benzoxazine polymerizable groups. In Handbook of Benzoxazine Resins; Elsevier: Amsterdam, The Netherlands, 2011; pp. 263–286. [Google Scholar]
- Hacaloğlu, J.; Uyar, T.; Ishida, H. Chapter 14-thermal degradation mechanisms of polybenzoxazines. In Handbook of Benzoxazine Resins; Elsevier: Amsterdam, The Netherlands, 2011; pp. 287–305. [Google Scholar]
- Agag, T.; Geiger, S.; Alhassan, S.M.; Qutubuddin, S.; Ishida, H. Low-viscosity polyether-based main-chain benzoxazine polymers: Precursors for flexible thermosetting polymers. Macromolecules 2010, 43, 7122–7127. [Google Scholar] [CrossRef]
- Takeichi, T.; Kano, T.; Agag, T. Synthesis and thermal cure of high molecular weight polybenzoxazine precursors and the properties of the thermosets. Polymer 2005, 46, 12172–12180. [Google Scholar] [CrossRef]
- Yeganeh, H.; Razavi-Nouri, M.; Ghaffari, M. Investigation of thermal, mechanical, and electrical properties of novel polyurethanes/high molecular weight polybenzoxazine blends. Polym. Adv. Technol. 2008, 19, 1024–1032. [Google Scholar] [CrossRef]
- Kiskan, B.; Yagci, Y.; Sahmetlioglu, E.; Toppare, L. Preparation of conductive polybenzoxazines by oxidative polymerization. J. Polym. Sci. Part A Polym. Chem. 2007, 45, 999–1006. [Google Scholar] [CrossRef]
- Nagai, A.; Kamei, Y.; Wang, X.-S.; Omura, M.; Sudo, A.; Nishida, H.; Kawamoto, E.; Endo, T. Synthesis and crosslinking behavior of a novel linear polymer bearing 1,2,3-triazol and benzoxazine groups in the main chain by a step-growth click-coupling reaction. J. Polym. Sci. Part A Polym. Chem. 2008, 46, 2316–2325. [Google Scholar] [CrossRef]
- Wang, L.; Gong, W.; Zheng, S. Poly(hydroxyether of bisphenol A)-alt-polydimethylsiloxane: A novel thermally crosslinkable alternating block copolymer. Polym. Int. 2009, 58, 124–132. [Google Scholar] [CrossRef]
- Khan, M.M.; Filiz, V.; Bengtson, G.; Shishatskiy, S.; Rahman, M.M.; Lillepaerg, J.; Abetz, V. Enhanced gas permeability by fabricating mixed matrix membranes of functionalized multiwalled carbon nanotubes and polymers of intrinsic microporosity (PIM). J. Membr. Sci. 2013, 436, 109–120. [Google Scholar] [CrossRef]
- Khan, M.M.; Bengtson, G.; Neumann, S.; Rahman, M.M.; Abetz, V.; Filiz, V. Synthesis, characterization and gas permeation properties of anthracene maleimide-based polymers of intrinsic microporosity. RSC Adv. 2014, 4, 32148–32160. [Google Scholar] [CrossRef]
- Rahman, M.M.; Filiz, V.; Khan, M.M.; Gacal, B.N.; Abetz, V. Functionalization of poss nanoparticles and fabrication of block copolymer nanocomposite membranes for co2 separation. React. Funct. Polym. 2015, 86, 125–133. [Google Scholar] [CrossRef]
- Koschine, T.; Rätzke, K.; Faupel, F.; Khan, M.M.; Emmler, T.; Filiz, V.; Abetz, V.; Ravelli, L.; Egger, W. Correlation of gas permeation and free volume in new and used high free volume thin film composite membranes. J. Polym. Sci. Part B Polym. Phys. 2015, 53, 213–217. [Google Scholar] [CrossRef]
- Khan, M.; Filiz, V.; Emmler, T.; Abetz, V.; Koschine, T.; Rätzke, K.; Faupel, F.; Egger, W.; Ravelli, L. Free volume and gas permeation in anthracene maleimide-based polymers of intrinsic microporosity. Membranes 2015, 5, 214. [Google Scholar] [CrossRef] [PubMed]
- Halder, K.; Khan, M.M.; Grünauer, J.; Shishatskiy, S.; Abetz, C.; Filiz, V.; Abetz, V. Blend membranes of ionic liquid and polymers of intrinsic microporosity with improved gas separation characteristics. J. Membr. Sci. 2017, 539, 368–382. [Google Scholar] [CrossRef]
- Wijmans, J.G.; Baker, R.W. The solution-diffusion model: A review. J. Membr. Sci. 1995, 107, 1–21. [Google Scholar] [CrossRef]
- Ning, X.; Ishida, H. Phenolic materials via ring-opening polymerization: Synthesis and characterization of bisphenol-a based benzoxazines and their polymers. J. Polym. Sci. Part A Polym. Chem. 1994, 32, 1121–1129. [Google Scholar] [CrossRef]
- Kiskan, B.; Yagci, Y.; Ishida, H. Synthesis, characterization, and properties of new thermally curable polyetheresters containing benzoxazine moieties in the main chain. J. Polym. Sci. Part A Polym. Chem. 2008, 46, 414–420. [Google Scholar] [CrossRef]
- Demir, K.D.; Kiskan, B.; Latthe, S.S.; Demirel, A.L.; Yagci, Y. Thermally curable fluorinated main chain benzoxazine polyethers via ullmann coupling. Polym. Chem. 2013, 4, 2106–2114. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Ishida, H. Anomalous isomeric effect on the properties of bisphenol f-based benzoxazines: Toward the molecular design for higher performance. Macromolecules 2014, 47, 5682–5690. [Google Scholar] [CrossRef]
- Sini, N.K.; Azechi, M.; Endo, T. Synthesis and properties of spiro-centered benzoxazines. Macromolecules 2015, 48, 7466–7472. [Google Scholar]
- Hemvichian, K.; Laobuthee, A.; Chirachanchai, S.; Ishida, H. Thermal decomposition processes in polybenzoxazine model dimers investigated by tga–ftir and gc–ms. Polym. Degrad. Stab. 2002, 76, 1–15. [Google Scholar] [CrossRef]
- Ergin, M.; Kiskan, B.; Gacal, B.; Yagci, Y. Thermally curable polystyrene via click chemistry. Macromolecules 2007, 40, 4724–4727. [Google Scholar] [CrossRef]
- Koros, W.J.; Fleming, G.K. Membrane-based gas separation. J. Membr. Sci. 1993, 83, 1–80. [Google Scholar] [CrossRef]
- Wind, J.D.; Paul, D.R.; Koros, W.J. Natural gas permeation in polyimide membranes. J. Membr. Sci. 2004, 228, 227–236. [Google Scholar] [CrossRef]
- Khan, M.M.; Bengtson, G.; Shishatskiy, S.; Gacal, B.N.; Mushfequr Rahman, M.; Neumann, S.; Filiz, V.; Abetz, V. Cross-linking of polymer of intrinsic microporosity (pim-1) via nitrene reaction and its effect on gas transport property. Eur. Polym. J. 2013, 49, 4157–4166. [Google Scholar] [CrossRef]
- Rahman, M.M.; Filiz, V.; Shishatskiy, S.; Abetz, C.; Georgopanos, P.; Khan, M.M.; Neumann, S.; Abetz, V. Influence of poly(ethylene glycol) segment length on CO2 permeation and stability of polyactive membranes and their nanocomposites with peg poss. ACS Appl. Mater. Interfaces 2015, 7, 12289–12298. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.M.; Filiz, V.; Bengtson, G.; Shishatskiy, S.; Rahman, M.; Abetz, V. Functionalized carbon nanotubes mixed matrix membranes of polymers of intrinsic microporosity for gas separation. Nanoscale Res. Lett. 2012, 7, 504. [Google Scholar] [CrossRef] [PubMed]
- Lilleparg, J.; Georgopanos, P.; Emmler, T.; Shishatskiy, S. Effect of the reactive amino and glycidyl ether terminated polyethylene oxide additives on the gas transport properties of pebax[registered sign] bulk and thin film composite membranes. RSC Adv. 2016, 6, 11763–11772. [Google Scholar] [CrossRef]
- Xie, H.; Simha, R. Theory of solubility of gases in polymers. Polym. Int. 1997, 44, 348–355. [Google Scholar] [CrossRef]
- Lin, H.; Wagner, E.V.; Swinnea, J.S.; Freeman, B.D.; Pas, S.J.; Hill, A.J.; Kalakkunnath, S.; Kalika, D.S. Transport and structural characteristics of crosslinked poly(ethylene oxide) rubbers. J. Membr. Sci. 2006, 276, 145–161. [Google Scholar] [CrossRef]
- Malykh, O.V.; Golub, A.Y.; Teplyakov, V.V. Polymeric membrane materials: New aspects of empirical approaches to prediction of gas permeability parameters in relation to permanent gases, linear lower hydrocarbons and some toxic gases. Adv. Colloid Interface Sci. 2011, 164, 89–99. [Google Scholar] [CrossRef] [PubMed]
- Teplyakov, V.; Meares, P. Correlation aspects of the selective gas permeabilities of polymeric materials and membranes. Gas Sep. Purif. 1990, 4, 66–74. [Google Scholar] [CrossRef]
Commercial Name | Code | Chain Architecture | Molecular Weight (g/mol) | |
---|---|---|---|---|
x | ||||
Jeffamine® D-230 | JD230 | ~2.5 | 230 | |
Jefamine® D structure | ||||
Jeffamine® ED-600 | JED600 | y | x + z | 600 |
~9 | ~3.6 | |||
Jeffamine® ED-900 | JED900 | ~12.5 | ~6 | 900 |
Jefamine® ED structure |
Polymer | Td10 (°C) | Onset Temperature (°C) | Char Yield (%) |
---|---|---|---|
Poly(BZ-JD230) | 340 | 370 | 4.3 |
Poly(BZ-JED600) | 350 | 380 | 4.0 |
Poly(BZ-JED900) | 360 | 390 | 3.3 |
Polymers | Permeability Coefficient (Barrer 1) | Permselectivity | |||||
---|---|---|---|---|---|---|---|
O2 | N2 | CO2 | CH4 | O2/N2 | CO2/N2 | CO2/CH4 | |
Poly(BZ-JD230) | 11 | 2 | 55 | 11 | 5.4 | 27.6 | 4.6 |
Poly(BZ-JED600) | 14 | 4 | 128 | 12 | 3.4 | 31.8 | 11.8 |
Poly(BZ-JED900) | 21 | 8 | 345 | 22 | 2.7 | 43.5 | 15.7 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, M.M.; Halder, K.; Shishatskiy, S.; Filiz, V. Synthesis and Crosslinking of Polyether-Based Main Chain Benzoxazine Polymers and Their Gas Separation Performance. Polymers 2018, 10, 221. https://doi.org/10.3390/polym10020221
Khan MM, Halder K, Shishatskiy S, Filiz V. Synthesis and Crosslinking of Polyether-Based Main Chain Benzoxazine Polymers and Their Gas Separation Performance. Polymers. 2018; 10(2):221. https://doi.org/10.3390/polym10020221
Chicago/Turabian StyleKhan, Muntazim Munir, Karabi Halder, Sergey Shishatskiy, and Volkan Filiz. 2018. "Synthesis and Crosslinking of Polyether-Based Main Chain Benzoxazine Polymers and Their Gas Separation Performance" Polymers 10, no. 2: 221. https://doi.org/10.3390/polym10020221
APA StyleKhan, M. M., Halder, K., Shishatskiy, S., & Filiz, V. (2018). Synthesis and Crosslinking of Polyether-Based Main Chain Benzoxazine Polymers and Their Gas Separation Performance. Polymers, 10(2), 221. https://doi.org/10.3390/polym10020221