Effects of Thermal Cross-Linking on the Structure and Property of Asymmetric Membrane Prepared from the Polyacrylonitrile
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Cross-Linked PAN Asymmetric Membranes
2.3. Characterization of Membranes
3. Results and Discussions
3.1. Chemical Structure Variations of PAN Asymmetric Membrane during Cross-Linking
3.2. Microstructure Variations of PAN Asymmetric membrane during Cross-Linking
3.3. Pore Structure Variations of PAN Asymmetric Membrane during Cross-Linking
3.4. Gas Separation Performance of PAN and CLA-PAN Membranes
3.5. Thermal Stability of PAN and CLA-PAN-230 Membranes
3.6. Chemical Stability of PAN and CLA-PAN Membranes
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Basu, S.; Khan, A.L.; Cano-Odena, A.; Liu, C.Q.; Vankelecom, I.F.J. Membrane-based technologies for biogas separations. Chem. Soc. Rev. 2010, 39, 750–768. [Google Scholar] [CrossRef] [PubMed]
- Schiewe, B.; Staudt-Bickel, C.; Vuin, A.; Wegner, G. Membrane-based gas separation of ethylene/ethylene oxide mixtures for product enrichment in microreactor technology. ChemPhysChem 2001, 2, 211–218. [Google Scholar] [CrossRef]
- Koros, W.J.; Mahajan, R. Pushing the limits on possibilities for large scale gas separation: Which strategies? J. Membr. Sci. 2000, 175, 181–196. [Google Scholar] [CrossRef]
- Shahid, S.; Nijmeijer, K. Performance and plasticization behavior of polymer-MOF membranes for gas separation at elevated pressures. J. Membr. Sci. 2014, 470, 166–177. [Google Scholar] [CrossRef]
- Song, C.W.; Wang, T.H.; Jiang, H.W.; Wang, X.Y.; Cao, Y.M.; Qiu, J.S. Gas separation performance of C/CMS membranes derived from poly (furfuryl alcohol) (PFA) with different chemical structure. J. Membr. Sci. 2010, 361, 22–27. [Google Scholar] [CrossRef]
- Jee, K.Y.; Kim, N.; Lee, Y.T. The effect of metal complex on pervaporation performance of composite membrane for separation of n-butanol/water mixture. J. Ind. Eng. Chem. 2016, 44, 155–163. [Google Scholar] [CrossRef]
- Shi, Q.; He, Z.J.; Gupta, K.M.; Wang, Y.H.; Lu, R.F. Efficient ethanol/water separation via functionalized nanoporous graphene membranes: Insights from molecular dynamics study. J. Mater. Sci. 2017, 52, 173–184. [Google Scholar] [CrossRef]
- Al-Obaidi, M.A.; Kara-Zaitri, C.; Mujtaba, I.M. Development of a mathematical model for apple juice compounds rejection in a spiral-wound reverse osmosis process. J. Food Eng. 2017, 192, 111–121. [Google Scholar] [CrossRef]
- Mereddy, R.; Chan, A.; Fanning, K.; Nirmal, N.; Sultanbawa, Y. Betalain rich functional extract with reduced salts and nitrate content from red beetroot (Beta vulgaris L.) using membrane separation technology. Food Chem. 2017, 215, 311–317. [Google Scholar] [CrossRef] [PubMed]
- Fang, Q.; Zhu, M.; Yu, S.R.; Sui, G.; Yang, X.P. Studies on soy protein isolate/polyvinyl alcohol hybrid nanofiber membranes as multi-functional eco-friendly filtration materials. Mater. Sci. Eng. B Adv. 2016, 214, 1–10. [Google Scholar] [CrossRef]
- Bolto, B.; Tran, T.; Hoang, M.; Xie, Z.L. Crosslinked poly(vinyl alcohol) membranes. Prog. Polym. Sci. 2009, 34, 969–981. [Google Scholar] [CrossRef]
- Dong, T.T.; Chen, G.H.; Gao, C.J. Preparation of chitin xanthate/polyacrylonitrile NF composite membrane with cross-linking agent hydrogen peroxide and its characterization. J. Membr. Sci. 2007, 304, 33–39. [Google Scholar] [CrossRef]
- Guo, Q.H.; Pintauro, P.N.; Tang, H.; O’Connor, S. Sulfonated and crosslinked polyphosphazene-based proton-exchange membranes. J. Membr. Sci. 1999, 154, 175–181. [Google Scholar] [CrossRef]
- Liu, Y.L.; Su, Y.H.; Lai, J.Y. In situ crosslinking of chitosan and formation of chitosan-silica hybrid membranes with using gamma-glycidoxypropyltrimethoxysilane as a crosslinking agent. Polymer 2004, 45, 6831–6837. [Google Scholar] [CrossRef]
- Puspasari, T.; Pradeep, N.; Peinemann, K.V. Crosslinked cellulose thin film composite nanofiltration membranes with zero salt rejection. J. Membr. Sci. 2015, 491, 132–137. [Google Scholar] [CrossRef]
- Shafiq, M.; Sabir, A.; Islam, A.; Khan, S.M.; Hussain, S.N.; Butt, M.T.Z.Z.; Jamil, T. Development and performance characteristics of silane crosslinked poly(vinyl alcohol)/chitosan membranes for reverse osmosis. J. Ind. Eng. Chem. 2017, 48, 99–107. [Google Scholar] [CrossRef]
- Rhim, J.W.; Park, H.B.; Lee, C.S.; Jun, J.H.; Kim, D.S.; Lee, Y.M. Crosslinked poly(vinyl alcohol) membranes containing sulfonic acid group: Proton and methanol transport through membranes. J. Membr. Sci. 2004, 238, 143–151. [Google Scholar] [CrossRef]
- Heydari, M.; Moheb, A.; Ghiaci, M.; Masoomi, M. Effect of cross-linking time on the thermal and mechanical properties and pervaporation performance of poly(vinyl alcohol) membrane cross-linked with fumaric acid used for dehydration of isopropanol. J. Appl. Polym. Sci. 2013, 128, 1640–1651. [Google Scholar] [CrossRef]
- Beppu, M.M.; Vieira, R.S.; Aimoli, C.G.; Santana, C.C. Crosslinking of chitosan membranes using glutaraldehyde: Effect on ion permeability and water absorption. J. Membr. Sci. 2007, 301, 126–130. [Google Scholar] [CrossRef]
- Shenvi, S.; Ismail, A.F.; Isloor, A.M. Preparation and characterization study of PPEES/chitosan composite membrane crosslinked with tripolyphosphate. Desalination 2014, 344, 90–96. [Google Scholar] [CrossRef]
- Albo, J.; Hagiwara, H.; Yanagishita, H.; Ito, K.; Tsuru, T. Structural Characterization of Thin-Film Polyamide Reverse Osmosis Membranes. Ind. Eng. Chem. Res. 2014, 53, 1442–1451. [Google Scholar] [CrossRef]
- Albo, J.; Wang, J.; Tsuru, T. Gas transport properties of interfacially polymerized polyamide composite membranes under different pre-treatments and temperatures. J. Membr. Sci. 2014, 449, 109–118. [Google Scholar] [CrossRef]
- Albo, J.; Wang, J.; Tsuru, T. Application of interfacially polymerized polyamide composite membranes to isopropanol dehydration: Effect of membrane pre-treatment and temperature. J. Membr. Sci. 2014, 453, 384–393. [Google Scholar] [CrossRef]
- Hou, H.Y.; Maranesi, B.; Chailan, J.F.; Khadhraoui, M.; Polini, R.; Di Vona, M.L.; Knauth, P. Crosslinked SPEEK membranes: Mechanical, thermal, and hydrothermal properties. J. Mater. Res. 2012, 27, 1950–1957. [Google Scholar] [CrossRef] [Green Version]
- Guo, M.M.; Liu, B.J.; Li, L.; Liu, C.; Wang, L.F.; Jiang, Z.H. Preparation of sulfonated poly(ether ether ketone)s containing amino groups/epoxy resin composite membranes and their in situ crosslinking for application in fuel cells. J. Power Sources 2010, 195, 11–20. [Google Scholar] [CrossRef]
- Du, N.Y.; Dal-Cin, M.M.; Robertson, G.P.; Guiver, M.D. Decarboxylation-Induced Cross-Linking of Polymers of Intrinsic Microporosity (PIMs) for Membrane Gas Separation. Macromolecules 2012, 45, 5134–5139. [Google Scholar] [CrossRef]
- Song, Q.L.; Cao, S.; Pritchard, R.H.; Ghalei, B.; Al-Muhtaseb, S.A.; Terentjev, E.M.; Cheetham, A.K.; Sivaniah, E. Controlled thermal oxidative crosslinking of polymers of intrinsic microporosity towards tunable molecular sieve membranes. Nat. Commun. 2014, 5, 4813. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wind, J.D.; Staudt-Bickel, C.; Paul, D.R.; Koros, W.J. The effects of crosslinking chemistry on CO2 plasticization of polyimide gas separation membranes. Ind. Eng. Chem. Res. 2002, 41, 6139–6148. [Google Scholar] [CrossRef]
- Qiu, W.L.; Chen, C.C.; Xu, L.R.; Cui, L.L.; Paul, D.R.; Koros, W.J. Sub-T-g Cross-Linking of a Polyimide Membrane for Enhanced CO2 Plasticization Resistance for Natural Gas Separation. Macromolecules 2011, 44, 6046–6056. [Google Scholar] [CrossRef]
- Yoon, K.; Hsiao, B.S.; Chu, B. High flux nanofiltration membranes based on interfacially polymerized polyamide barrier layer on polyacrylonitrile nanofibrous scaffolds. J. Membr. Sci. 2009, 326, 484–492. [Google Scholar] [CrossRef]
- Feng, C.C.; Xu, J.; Li, M.M.; Tang, Y.Y.; Gao, C.J. Studies on a novel nanofiltration membrane prepared by cross-linking of polyethyleneimine on polyacrylonitrile substrate. J. Membr. Sci. 2014, 451, 103–110. [Google Scholar] [CrossRef]
- Li, W.B.; Yang, Z.H.; Zhang, G.L.; Fan, Z.; Meng, Q.; Shen, C.; Gao, C.J. Stiff metal-organic framework-polyacrylonitrile hollow fiber composite membranes with high gas permeability. J. Mater. Chem. A 2014, 2, 2110–2118. [Google Scholar] [CrossRef]
- Kim, J.H.; Ha, S.Y.; Nam, S.Y.; Rhim, J.W.; Baek, K.H.; Lee, Y.M. Selective permeation of CO2 through pore-filled polyacrylonitrile membrane with poly(ethylene glycol). J. Membr. Sci. 2001, 186, 97–107. [Google Scholar] [CrossRef]
- Lin, W.C.; Liu, T.Y.; Yang, M.C. Hemocompatibility of polyacrylonitrile dialysis membrane immobilized with chitosan and heparin conjugate. Biomaterials 2004, 25, 1947–1957. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.G.; Wan, L.S.; Xu, Z.K. Surface engineerings of polyacrylonitrile-based asymmetric membranes towards biomedical applications: An overview. J. Membr. Sci. 2007, 304, 8–23. [Google Scholar] [CrossRef]
- David, L.I.B.; Ismail, A.F. Influence of the thermastabilization process and soak time during pyrolysis process on the polyacrylonitrile carbon membranes for O-2/N-2 separation. J. Membr. Sci. 2003, 213, 285–291. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, D.; Wu, Y.H.; Wang, Z.; Wang, T.H.; Qiu, J.S. Modification of the desalination property of PAN-based nanofiltration membranes by a preoxidation method. Desalination 2015, 357, 208–214. [Google Scholar] [CrossRef]
- Li, W.B.; Yang, Z.H.; Meng, Q.; Shen, C.; Zhang, G.L. Thermally stable and solvent resistant self-crosslinked TiO2/PAN hybrid hollow fiber membrane fabricated by mutual supporting method. J. Membr. Sci. 2014, 467, 253–261. [Google Scholar] [CrossRef]
- Dalton, S.; Heatley, F.; Budd, P.M. Thermal stabilization of polyacrylonitrile fibres. Polymer 1999, 40, 5531–5543. [Google Scholar] [CrossRef]
- Jean, Y.C.; Mallon, P.E.; Zhang, R.; Chen, H.M.; Li, Y.; Zhang, J.J.; Wu, Y.C.; Sandreczki, T.C.; Suzuki, R.; Ohdaira, T.; et al. Positron studies of polymeric coatings. Radiat. Phys. Chem. 2003, 68, 395–402. [Google Scholar] [CrossRef]
- Zhang, J.J.; Chen, H.M.; Li, Y.; Suzuki, R.; Ohdaira, T.; Jean, Y.C. Free-volume distribution and glass transition of nano-scale polymeric films. Radiat. Phys. Chem. 2007, 76, 172–179. [Google Scholar] [CrossRef]
- Zhao, Q.A.; An, Q.F.; Sun, Z.W.; Qian, J.W.; Lee, K.R.; Gao, C.J.; Lai, J.Y. Studies on Structures and Ultrahigh Permeability of Novel Polyelectrolyte Complex Membranes. J. Phys. Chem. B 2010, 114, 8100–8106. [Google Scholar] [CrossRef] [PubMed]
- Han, R.L.; Zhang, S.H.; Liu, C.; Wang, Y.T.; Jian, X.G. Effect of NaA zeolite particle addition on poly(phthalazinone ether sulfone ketone) composite ultrafiltration (UF) membrane performance. J. Membr. Sci. 2009, 345, 5–12. [Google Scholar] [CrossRef]
- Stern, S.A.; Gareis, P.J.; Sinclair, T.F.; Mohr, P.H. Performance of a versatile variable-volume permeability cell. Comparison of gas permeability measurements by the variable-volume and variable-pressure methods. J. Appl. Polym. Sci. 1963, 7, 2035–2051. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, T.H.; Zhang, S.H.; Qiu, J.S.; Han, X.G. Preparation and characterization of carbon membranes made from poly(phthalazinone ether sulfone ketone). Carbon 2006, 44, 2764–2769. [Google Scholar] [CrossRef]
- Conley, R.T.; Bieron, J.F. Examination of the oxidative degradation of polyacrylonitrile using infrared spectroscopy. J. Appl. Polym. Sci. 1963, 7, 1757–1773. [Google Scholar] [CrossRef]
- Standage, A.E.; Matkowsky, R.D. Thermal Oxidation Of Polyacrylonitrile. Eur. Polym. J. 1971, 7, 775–783. [Google Scholar] [CrossRef]
- Wang, T.; Zhao, C.W.; Li, P.; Li, Y.; Wang, J. Effect of non-solvent additives on the morphology and separation performance of poly(m-phenylene isophthalamide) (PMIA) hollow fiber nanofiltration membrane. Desalination 2015, 365, 293–307. [Google Scholar] [CrossRef]
- Park, H.B.; Kamcev, J.; Robeson, L.M.; Elimelech, M.; Freeman, B.D. Maximizing the right stuff: The trade-off between membrane permeability and selectivity. Science 2017, 356, eaab0530. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; Zha, S.; Xia, L.; Guan, R. Synthesis and characterization of diphenylsilanediol modified epoxy resin and curing agent. J. Adhes. Sci. Technol. 2015, 29, 641–656. [Google Scholar] [CrossRef]
Membrane | PEG 10000 | PEG 20000 | BSA | |||
---|---|---|---|---|---|---|
Flux (L·m−3 h−1) | Rejection Rate (%) | Flux (L·m−3 h−1) | Rejection Rate (%) | Flux (L m−3 h−1) | Rejection Rate (%) | |
PAN | 13.76 | 10.35 | 11.08 | 44.16 | 8.23 | 99.26 |
CLA-PAN-230 | 0.42 | 14.47 | 0.33 | 52.32 | 0.17 | 99.9 |
CLA-PAN-260 | 0.31 | 18.71 | 0.24 | 59.93 | 0.10 | 100 |
Pore size (nm) | ~1.8 [48] | ~2.4 [48] | ~6.8 [49] |
Membrane | τ3 1 (ns) | I3 2 (%) | R3 3 (Å) |
---|---|---|---|
PAN | 2.1138 | 9.0862 | 2.9576 |
CLA-PAN-230 | 2.3773 | 3.2015 | 3.1790 |
Membrane | Mixed Gas Permeance | Selectivity | |
---|---|---|---|
O2 (GPU) | N2 (GPU) | O2/N2 | |
PAN | 216 | 194 | 1.11 |
CLA-PAN-230-1 h | 49 | 40 | 1.22 |
CLA-PAN-230-6 h | 242 | 205 | 1.18 |
Knudsen diffusion | 0.935 |
Cross-Linking Temperature (°C) | Polymer Membrane | 180 | 200 | 220 | 230 | 240 | 250 | 260 |
---|---|---|---|---|---|---|---|---|
Mass residual (wt %) | 0 | 95.34 | 97.47 | 99.18 | 100 | 100 | 100 | 100 |
Solvent | NMP | DMF | DMSO | CHCl3 | THF | Ethanol | 6 mol/L H2SO4 | 20 wt % NaOH |
---|---|---|---|---|---|---|---|---|
Mass residual (wt %) | 100 | 100 | 100 | 100 | 100 | 100 | 99.99 | 100 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, X.; Li, L.; Xu, R.; Liu, Q.; Ding, L.; Pan, Y.; Wang, C.; Hung, W.; Lee, K.; Wang, T. Effects of Thermal Cross-Linking on the Structure and Property of Asymmetric Membrane Prepared from the Polyacrylonitrile. Polymers 2018, 10, 539. https://doi.org/10.3390/polym10050539
Jin X, Li L, Xu R, Liu Q, Ding L, Pan Y, Wang C, Hung W, Lee K, Wang T. Effects of Thermal Cross-Linking on the Structure and Property of Asymmetric Membrane Prepared from the Polyacrylonitrile. Polymers. 2018; 10(5):539. https://doi.org/10.3390/polym10050539
Chicago/Turabian StyleJin, Xin, Lin Li, Ruisong Xu, Qiao Liu, Linghua Ding, Yanqiu Pan, Chunlei Wang, Weisong Hung, Kueirrarn Lee, and Tonghua Wang. 2018. "Effects of Thermal Cross-Linking on the Structure and Property of Asymmetric Membrane Prepared from the Polyacrylonitrile" Polymers 10, no. 5: 539. https://doi.org/10.3390/polym10050539
APA StyleJin, X., Li, L., Xu, R., Liu, Q., Ding, L., Pan, Y., Wang, C., Hung, W., Lee, K., & Wang, T. (2018). Effects of Thermal Cross-Linking on the Structure and Property of Asymmetric Membrane Prepared from the Polyacrylonitrile. Polymers, 10(5), 539. https://doi.org/10.3390/polym10050539