Electric Volume Resistivity for Biopolyimide Using 4,4′-Diamino-α-truxillic acid and 1,2,3,4-Cyclobutanetetracarboxylic dianhydride
Abstract
:1. Introduction
2. Experimental Procedures
2.1. Synthesis of Biopolyimide
2.2. Electric Resistivity Measurement
2.3. Dielectric Breakdown Measurement
3. Results and Discussion
3.1. Size Dependency on Electric Resistivity
3.2. Thickness Dependency on Electric Resistivity
3.3. Effect of Drying Time on Electric Resistivity
4. Conclusions
Supplementary Materials
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Jamshidian, M.; Tehrany, E.A.; Imran, M.; Jacquot, M.; Desobry, S. Poly-Lactic Acid: Production, Applications, Nanocomposites, and Release Studies. Compr. Rev. Food Sci. F 2010, 9, 552–571. [Google Scholar] [CrossRef]
- Grishkewich, N.; Mohammed, N.; Tang, J.T.; Tam, K.C. Recent advances in the application of cellulose nanocrystals. Curr. Opin. Colloid Interfance Sci. 2017, 29, 32–45. [Google Scholar] [CrossRef]
- Youssef, A.M.; El-Sayed, S.M. Bionanocomposites materials for food packaging applications: Concepts and future outlook. Carbohyd. Polym. 2018, 193, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.S.; Yu, H.P.; Lee, S.Y.; Wei, T.; Li, J.; Fan, Z.J. Nanocellulose: A promising nanomaterial for advanced electrochemical energy storage. Chem. Soc. Rev. 2018, 8, 2837–2872. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, N.; Grishkewich, N.; Tam, K.C. Cellulose nanomaterials: Promising sustainable nanomaterials for application in water/wastewater treatment processes. Environ. Sci. Nano 2018, 5, 623–658. [Google Scholar] [CrossRef]
- Correa, J.P.; Montalvo-Navarrete, J.M.; Hidalgo-Salazar, M.A. Carbon footprint considerations for biocomposite materials for sustainable products: A review. J. Clean. Prod. 2019, 208, 785–794. [Google Scholar] [CrossRef]
- Hamad, K.; Kaseem, M.; Ayyoob, M.; Joo, J.; Deri, F. Polylactic acid blends: The future of green, light and tough. Prog. Polym. Sci. 2018, 85, 83–127. [Google Scholar] [CrossRef]
- Nakajima, H.; Dijkstra, P.; Loos, K. The Recent Developments in Biobased Polymers toward General and Engineering Applications: Polymers that Are Upgraded from Biodegradable Polymers, Analogous to Petroleum-Derived Polymers, and Newly Developed. Polymers 2017, 9, 523. [Google Scholar] [CrossRef] [PubMed]
- Mittal, K.L. Polyimides: Synthesis, Characterization and Applications; John Wiley Sons: New York, NY, USA, 1985. [Google Scholar]
- Cassidy, P.E. Thermally Stable Polymers: Synthesis and Properties; Marcel Dekker: New York, NY, USA, 1980. [Google Scholar]
- Kricheldorf, H.R.; Linzer, V. Liquid crystalline polyimides: 18. Thermotropic polyimides based on biphenyl-3,30,4,40-tetracarboxylic anhydride. Polymer 1995, 36, 1893–1902. [Google Scholar] [CrossRef]
- Marek, M.; Doskocilova, D.; Schmidt, P.; Schneider, B.; Kriz, J.; Labsky, J.; Puffer, R. New soluble polyimides prepared from 4,40-(alkylenediyldioxy) dianilines. Polymer 1994, 35, 4881–4888. [Google Scholar] [CrossRef]
- Kaneko, T.; Tateyama, S.; Okajima, M.; Hojoon, S.; Takaya, N. Ultrahigh heat-resistant, transparent bioplastics from exotic amino acid. Mater. Today Proc. 2016, 3, S21–S29. [Google Scholar] [CrossRef]
- Suvannasara, P.; Tateyama, S.; Miyasato, A.; Matsumura, K.; Shimoda, T.; Ito, T.; Yamagata, Y.; Fujita, T.; Takaya, N.; Kaneko, T. Biobased Polyimides from 4-Aminocinnamic Acid Photodimer. Macromolecules 2014, 47, 1586–1593. [Google Scholar] [CrossRef]
- ASTM D2305-02 Standard Test Methods for Polymeric Films Used for Electrical Insulation. Available online: http://file.yizimg.com/175706/2012021309564932.pdf (accessed on 24 July 2019).
- ASTM D257–07 Standard Test Methods for DC Resistance or Conductance of Insulating Materials. Available online: http://www-eng.lbl.gov/~shuman/NEXT/CURRENT_DESIGN/TP/MATERIALS/ASTM-D257_resistance_meas.pdf (accessed on 24 July 2019).
- Frederickson, A.R.; Benson, C.E.; Bockman, J.F. Measurement of charge storage and leakage in polyimides. Nucl. Instrum. Methods Phys. Res. Sect. B 2003, 208, 454–460. [Google Scholar] [CrossRef]
- Vila, F.; Sessler, G.M. Influence of electron-beam irradiation on electric parameters of dielectric materials. J. Electrost. 2001, 51, 146–152. [Google Scholar]
- Dang, Z.M.; Ma, L.J.; Zha, J.W.; Yao, S.H.; Xie, D.; Chen, Q.; Duan, X. Origin of ultralow permittivity in polyimide/mesoporous silicate nanohybrid films with high resistivity and high breakdown strength. J. Appl. Phys. 2009, 105, 044104. [Google Scholar] [CrossRef]
- Cosutchi, A.I.; Hulubei, C.; Buda, M.; Botila, T.; Ioan, S. Effects of chemical structure on the electrical properties of some polymers with imidic structure. E-Polymers 2017, 7. [Google Scholar] [CrossRef]
- Kim, Y.J.; Jeong, Y.G. High performance electric heating polyimide composite films reinforced with acid-treated multiwalled carbon nanotubes. Macromol. Res. 2015, 23, 1144–1151. [Google Scholar] [CrossRef]
- Yang, F.C.; Li, Y.F.; Zhang, S.J.; Tao, M.; Zhao, J.J.; Hang, C.S. Functionalization of multiwalled carbon nanotubes and related polyimide/carbon nanotubes composites. Synth. Met. 2010, 160, 1805–1808. [Google Scholar] [CrossRef]
- DuPont™ Kapton®. Available online: https://www.dupont.com/content/dam/dupont/products-and-services/membranes-and-films/polyimde-films/documents/DEC-Kapton-summary-of-properties.pdf (accessed on 24 July 2019).
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kato, S.; Amat Yusof, F.A.; Harimoto, T.; Takada, K.; Kaneko, T.; Kawai, M.; Mitsumata, T. Electric Volume Resistivity for Biopolyimide Using 4,4′-Diamino-α-truxillic acid and 1,2,3,4-Cyclobutanetetracarboxylic dianhydride. Polymers 2019, 11, 1552. https://doi.org/10.3390/polym11101552
Kato S, Amat Yusof FA, Harimoto T, Takada K, Kaneko T, Kawai M, Mitsumata T. Electric Volume Resistivity for Biopolyimide Using 4,4′-Diamino-α-truxillic acid and 1,2,3,4-Cyclobutanetetracarboxylic dianhydride. Polymers. 2019; 11(10):1552. https://doi.org/10.3390/polym11101552
Chicago/Turabian StyleKato, Shunsuke, Fitri Adila Amat Yusof, Toyohiro Harimoto, Kenji Takada, Tatsuo Kaneko, Mika Kawai, and Tetsu Mitsumata. 2019. "Electric Volume Resistivity for Biopolyimide Using 4,4′-Diamino-α-truxillic acid and 1,2,3,4-Cyclobutanetetracarboxylic dianhydride" Polymers 11, no. 10: 1552. https://doi.org/10.3390/polym11101552
APA StyleKato, S., Amat Yusof, F. A., Harimoto, T., Takada, K., Kaneko, T., Kawai, M., & Mitsumata, T. (2019). Electric Volume Resistivity for Biopolyimide Using 4,4′-Diamino-α-truxillic acid and 1,2,3,4-Cyclobutanetetracarboxylic dianhydride. Polymers, 11(10), 1552. https://doi.org/10.3390/polym11101552