Potentiometric PVC-Membrane-Based Sensor for Dimethylamine Assessment Using A Molecularly Imprinted Polymer as A Sensory Recognition Element
Abstract
:1. Introduction
2. Materials and Methods
2.1. Equipment
2.2. Reagents
2.3. Synthesis of Molecularly Imprinted Polymer
2.4. Sensor Construction and Potential (EMF) Measurements
2.5. Flow-Injection Setup and Continuous Measurements
2.6. DMA Assessment in Soil Samples
3. Results and Discussions
3.1. Characterization of the Molecularly Imprinted Polymeric Membrane
3.2. Response Characteristics of DMA Sensor
3.3. Method Validation
3.3.1. Linearity and Detection Limit of the Method
3.3.2. Method Accuracy and Precision
3.3.3. Within-Day Repeatability and Between-Days Reproducibility
3.3.4. Robustness and Ruggedness of the Presented Method
3.3.5. Effect of pH
3.3.6. Time Response
3.3.7. Method Selectivity
3.4. Analytical Applications
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Standard Methods for the Examination of Water and Wastewater, 19th ed.; American Public Health Association: Washington, DC, USA, 1995.
- Hassan, S.S.M.; Abdel-Shafi, A.A.; Mohammed, A.H.K. Flow injection fluorimetric determination of chromium(VI) in electroplating baths by luminescence quenching of tris(2,2_-bipyridyl) ruthenium(II). Talanta 2005, 67, 696–702. [Google Scholar] [CrossRef] [PubMed]
- Gysel, B.; Musin, W. “Methylamines” in Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH Verlag: Weinheim, Germany, 2005. [Google Scholar]
- Ashford’s Dictionary of Industrial Chemicals, 3rd ed.; ACS, 2001; pp. 3284–3286.
- Facchini, M.C.; Decesari, S.; Rinaldi, M.; Carbone, C.; Finessi, E.; Mircea, M.; Sandro, F.; Moretti, F.; Tagliavini, E.; Ceburnis, D.; et al. Important source of marine secondary organic aerosol from biogenic amines. Environ. Sci. Technol. 2008, 42, 9116–9121. [Google Scholar] [CrossRef] [PubMed]
- Müller, C.; Iinuma, Y.; Karstensen, J.; VanPinxteren, D.; Lehmann, S.; Gnauk, T.; Herrmann, H. Seasonal variation of aliphatic amines in marine sub-micrometer particles at the Cape Verde islands. Atmos. Chem. Phys. 2009, 9, 9587–9597. [Google Scholar] [CrossRef] [Green Version]
- Zhang, A.Q.; Mitchell, S.C.; Ayesh, R.; Smith, R.L. Dimethylamine formation in man. Biochem. Pharm. 1993, 45, 2185–2188. [Google Scholar] [CrossRef]
- Kumar, K.S.R.P.; Kumar, V.J.; Prasanna, S.J.; Kumar, M.N.; Raju, K.V.S.N.; Rajput, P.; Sharma, H.K.; Mukkanti, K. Determination and validation of Monomethylamine content by Ion Chromatography method in pharmaceutical drug substances. Der Pharma Chem. 2010, 2, 277–287. [Google Scholar]
- Dikshith, T.S.S. Hazardous Chemicals: Safety Management and Global Regulations; CRC Press Taylor and Francis: Boco Raton, FL, USA, 2013; p. 146. [Google Scholar]
- Occupational Health Guidelines for Chemical Hazards, DHHS (NIOSH Publications and Products) Publication No. 81-123. 1981.
- Chobanyan, K.; Mitschke, A.; Gutzki, F.M.; Stichtenoth, D.O.; Tsikas, D. Accurate quantification of dimethylamine (DMA) in human plasma and serum by GC–MS and GC–tandem MS as pentafluorobenzamide derivative in the positive-ion chemical ionization mode. J. Chromatogr. B 2007, 851, 240–249. [Google Scholar] [CrossRef]
- Zeise, S.H.; DaCosta, K.A.; Fox, J.G. Endogenous formation of dimethylamine. Biochem. J. 1985, 232, 403–408. [Google Scholar] [CrossRef] [Green Version]
- Nosolyuk, G.N.; Protsenko, T.L.; Dibrova, A.K. A method for the potentiometric determination of dimethylamine, acetic acid, and hydrochloric acid content of regenerated dimethylacetamide. Khimicheskie Volokna 1981, I, 55–56. [Google Scholar] [CrossRef]
- Hassan, S.S.M. Ion-selective electrodes in organic functional group analysis: Microdetermination of the amino group using the chloride electrode. Fresenius’ Z. Anal. Chem. 1974, 270, 125–126. [Google Scholar] [CrossRef]
- Hassan, S.S.M.; Tadros, F.; Selig, W. Microdetermination and pKa measurement of some aliphatic amines using the copper-ion-selective electrode. Microchem. J. 1981, 26, 426–435. [Google Scholar] [CrossRef]
- Rao, K.V.; Gorla, R.; Sreenivasulu, B.; Sreenivas, N.; Kaleemullah, T.; Kumar, S.H.; Korupolu, R.B. Spectrophotometric method for determination of dimethylamine in metformin hydrochloride via derivatization with 1-fluoro 2,4-dinitrobenzene. Der Pharm. Sin. 2015, 6, 24–29. [Google Scholar]
- Pacquit, A.; Lau, K.T.; Diamond, D. Development of a volatile amine sensor for the monitoring of fish spoilage. Talanta 2006, 69, 515–520. [Google Scholar] [CrossRef] [PubMed]
- Al-Sabha, T.N.; Al-Karemy, N.M. The Use of 7,7′,8,8′-Tetracyanoquinodimethane for the Spectrophotometric Determination of Some Primary Amines Application to Real Water Samples. J. Anal. Methods Chem. 2013, 2013, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Hassan, S.S.M.; Iskander, M.L.; Nashed, N.E. Spectrophotometric determination of aliphatic primary and secondary amines by reaction with p-benzoquinone. Talanta 1985, 32, 301–305. [Google Scholar] [CrossRef]
- Smith, R.E.; Davis, W.R. Spectrophotometric determination of amines with p-chloranil. Anal. Chem. 1984, 56, 2345–2349. [Google Scholar] [CrossRef]
- Meshkov, B.B.; Ionova, I.V.; Tsybyshev, V.P.; Alfimov, M.V.; Livshits, V.A. Detection of low concentrations of volatile amines in aqueous solutions using pH-dependent fluorophores. Nanotechnol. Russ. 2015, 10, 337–344. [Google Scholar] [CrossRef]
- Gopalakrishnan, J.; Asha Devi, S. Current Development in the Evaluation Methods of Pulmonary Drug Delivery System. Ind. J. Pharm. Sci. 2016, 78, 409–416. [Google Scholar]
- Tsikas, D.; Thum, T.; Becker, T.; Pham, V.V.; Chobanyan, K.; Mitschke, A.; Beckmann, B.; Gutzki, F.M.; Bauersachs, J.; Stichtenoth, D.O. Accurate quantification of dimethylamine (DMA) in human urine by gas chromatography-mass spectrometry as pentafluorobenzamide derivative: Evaluation of the relationship between DMA and its precursor asymmetric dimethylarginine (ADMA) in health and disease. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2007, 851, 229–239. [Google Scholar] [CrossRef]
- Graffius, G.C.; Jocher, B.M.; Zewgea, D.; Halseya, H.M.; Lee, G.; Bernardoni, F.; Bu, X.; Hartman, R.; Regalado, E.L. Generic gas chromatography-flame ionization detection method for quantitation of volatile amines in pharmaceutical drugs and synthetic intermediates. J. Chromatogr. A 2017, 1518, 70–77. [Google Scholar] [CrossRef]
- Teerhnk, T.; Hennekes, M.W.T.; Mulder, C.; Brulez, H.F.H. Determination of dimethylamine in biological samples by high-performance liquid chromatography. Chromatography B 1997, 691, 269–276. [Google Scholar] [CrossRef]
- Iqbal, M.A.; Szulejko, J.E.; Kim, K.H. Determination of methylamine, dimethylamine, and trimethylamine in air by high-performance liquid chromatography with derivatization using 9-fluorenylmethylchloroformate. Anal. Methods 2014, 6, 5697–5707. [Google Scholar] [CrossRef]
- Erupea, M.E.; Martin, A.L.; Silvaa, P.J.; Malloy, Q.G.J.; Yonis, N.; Cocker, D.R., III; Purvis-Roberts, K.L. Determination of methylamines and trimethylamine-N-oxide in particulate matter by non-suppressed ion chromatography. J. Chromatogr. A 2010, 1217, 2070–2073. [Google Scholar] [CrossRef] [PubMed]
- Praplan, A.P.; Bianchi, F.; Dommen, J.; Baltensperger, U. Dimethylamine and ammonia measurements with ion chromatography during the CLOUD4 campaign. Atmos. Meas. Tech. 2012, 5, 2161–2167. [Google Scholar] [CrossRef] [Green Version]
- Fang, L.M.; Hu, M.; Chen, A.; Xu, X.P.; Shi, C.O. Determination of the residual dimethylamine in arbidol hydrochloride by ion chromatography. Chin. J. Pharm. Anal. 2016, 36, 1852–1856. [Google Scholar]
- Timm, M.; Jørgensen, B.M. Simultaneous determination of ammonia, dimethylamine, trimethylamine and trimethylamine-n-oxide in fish extracts by capillary electrophoresis with indirect UV-detection. J. Food Chem. 2002, 76, 509–518. [Google Scholar] [CrossRef]
- Dabek-Zlotorzynska, E.; Maruszak, W. Determination of dimethylamine and other low-molecular-mass amines using capillary electrophoresis with laser-induced fluorescence detection. J. Chromatogr. B Biomed. Sci. Appl. 1998, 714, 77–85. [Google Scholar] [CrossRef]
- Moliner-Martínez, Y.; Campíns-Falcó, P.; Herráez-Hernández, R. A method for the determination of dimethylamine in air by collection on solid support sorbent with subsequent derivatization and spectrophotometric analysis. J. Chromatogr. A 2004, 1059, 17–24. [Google Scholar] [CrossRef]
- Diaz, Y.J.; Page, Z.A.; Knight, A.S.; Treat, N.J.; Hemmer, J.R.; Hawker, C.J.; de Alaniz, J.R. A versatile and highly selective colorimetric sensor for the detection of amines. Chem. Eur. J. 2017, 23, 3562–3566. [Google Scholar] [CrossRef]
- Ayad, M.M.; Salahuddin, N.; Minisy, I.M. Detection of some volatile organic compounds with chitosan-coated quartz crystal microbalance. Des. Monomers Polym. 2014, 17, 795–802. [Google Scholar] [CrossRef]
- Takao, Y.; Nakanishi, M.; Kawaguchi, T.; Shimizu, Y.; Egashira, M. Semiconductor dimethylamine gas sensors with high sensitivity and selectivity. Sens. Actuators B Chem. 1995, 25, 375–379. [Google Scholar] [CrossRef]
- Egashira, M.; Shimizu, Y.; Takao, Y. High Ammonia Sensitive Semiconductor Gas Sensors with Double-Layer Structure and Interface Electrodes. J. Electrochem. Soc. 1994, 141, 1028–1034. [Google Scholar]
- Zhang, L.; Zhao, J.H.; Lu, H.; Li, L.; Li, H.; Zhang, J.; Zheng, J.F.; Zhu, Z. Highly sensitive and selective dimethylamine sensors based on hierarchical ZnO architectures composed of nanorods and nanosheet-assembled microspheres. Sens. Actuators B Chem. 2012, 171, 1101–1109. [Google Scholar] [CrossRef]
- DOD Technologies Industrial Case Coders Cary, IL USA.
- Sensidyne Inc. Industrial and Environmental Health and Safety Instrumentation Group Petersburg, FL, USA.
- Bakker, E.; Pretsch, E. Potentiometric sensors for trace-level analysis. Trends Anal. Chem. 2005, 24, 199–207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hassan, S.S.M.; Marzouk, S.A.M.; Mohamed, A.H.K.; Badawy, N.M. Novel dicyanoargentate polymeric membrane sensors for selective determination of cyanide ions. Electroanalysis 2004, 16, 298–303. [Google Scholar] [CrossRef]
- Hassan, S.S.M.; Mahmoud, W.H.; Mohamed, A.H.K.; Kelany, A.E. Mercury(II) Ion-Selective Polymeric Membrane Sensors for Analysis of Mercury in Hazardous Wastes. Anal. Sci. 2006, 22, 877–881. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hassan, S.S.M.; Badr, I.H.A.; Kamel, A.H.; Mohamed, M.S. A Novel Poly (Vinyl Chloride) Matrix Membrane Sensor for Batch and Flow-injection Determination of Thiocyanate, Cyanide and Some Metal Ions. Anal. Sci. 2009, 25, 911–917. [Google Scholar] [CrossRef]
- Moreira, F.T.C.; Guerreiro, J.R.L.; Azevedo, V.L.; Kamel, A.H.; Sales, M.G.F. New biomimetic sensors for the determination of tetracycline in biological samples: Batch and flow mode operations. Anal. Methods 2010, 2, 2039–2045. [Google Scholar] [CrossRef] [Green Version]
- Kamel, A.H.; Mahmoud, W.; Mostafa, M.S. Biomimetic ciprofloxacin sensors made of molecularly imprinted network receptors for potential measurements. Anal. Methods 2011, 3, 957–964. [Google Scholar] [CrossRef]
- Hassan, S.S.M.; Elnemma, E.M.; Mohamed, A.H.K. Novel biomedical sensors for flow injection potentiometric determination of creatinine in human serum. Electroanalysis 2005, 17, 2246–2253. [Google Scholar] [CrossRef]
- Florea, A.; Hosu, O.; Ciui, B.; Cristea, C.; Tiwari, A.; Uzun, L. Molecularly Imprinted Polymer-Based Sensors for Biomedical and Environmental Applications, Chapter 6; Scrivener Publishing LLC.: Beverly, MA, USA, 2017. [Google Scholar]
- Kamel, A.H.; Hassan, A.M.E. Solid contact potentiometric sensors based on host-tailored molecularly imprinted polymers for creatine assessment. Int. J. Electrochem. Sci. 2016, 11, 8938–8949. [Google Scholar] [CrossRef]
- Pohanka, M. Sensors based on molecularly imprinted polymers. Int. J. Electrochem. Sci. 2017, 12, 8082–8094. [Google Scholar] [CrossRef]
- Uzun, L.; Turner, P.F. Molecularly-imprinted polymer sensors: Realizing their potential. Biosens. Bioelectron. 2016, 76, 131–144. [Google Scholar] [CrossRef] [PubMed]
- Yamamura, H.; Enna, S.J.; Kuhar, M.J. Neuro Transminer Receptor Binding, Charpter 3; Raven Press: New York, NY, USA, 1985. [Google Scholar]
- IUPAC. Analytical Chemistry Division, Commission on Analytical Nomenclature, Recommendations for Nomenclature of Ion-Selective Electrodes. Pure Appl. Chem. 1976, 48, 127–132. [Google Scholar] [CrossRef]
- Guidelines for Food Testing Laboratories; International Accreditation Service Inc.: Brea, CA, USA, January 2016.
- Chandran, S.; Singh, R.S.P. Comparison of various international guidelines for analytical method validation. Pharmazie 2007, 62, 4–14. [Google Scholar] [PubMed]
- Umezawa, Y.; Umezawa, K.; Sato, H. Selectivity coefficients for ion-selective electrodes: Recommended methods for reporting KA, Bpot values (Technical Report). Pure & Appl. Chem. 1995, 67, 507–518. [Google Scholar]
- Kanchi, S.; Singh, P.; Bisetty, K. Dithiocarbamates as hazardous remediation agent: A critical review on progress in environmental chemistry for inorganic species studies of 20th century. Arab. J. Chem. 2014, 7, 11–25. [Google Scholar] [CrossRef] [Green Version]
Parameter | Static | Hydro-Dynamic |
---|---|---|
Slope, (mV decade–1) | 51.3 ± 0.3 | 50.1 ± 0.7 |
Correlation coefficient, (r2) | 0.9997 | 0.9976 |
Linear range, (mol L–1) | 5.0 × 10−5 to 1.0 × 10−2 | 8.0 × 10−5 to 1.0 × 10−2 |
Detection limit, (mol L–1) | 4.6 × 10−6 | 1.0 × 10−5 |
Working range, pH | 2.8−9.7 | 2.8−9.7 |
Response time, (s) | 10 | 60 |
Life span, (week) | 8 | 8 |
Standard deviation, (mV) | 0.3 | 0.7 |
Accuracy, (%) | 99.5 | 99.1 |
Precision, CVw,(%) | 0.5 | 0.9 |
Interference (B) | *Log KpotDMA,J |
---|---|
Histidine | −2.12 ± 0.5 |
Alanin | −3.11 ± 0.2 |
Arginin | −3.07 ± 0.3 |
Hexamine | −2.52 ± 0.4 |
Urea | −2.94 ± 0.6 |
Hydroxylamine | −2.87 ± 0.4 |
Aminophenol | −3.01 ± 0.3 |
Methylamine | −2.21±0.5 |
Ethylenediamine | −2.05±0.3 |
Soil Samples | ||
---|---|---|
Added, mmol L–1 | Found*, mmol L–1 | Recovery,% |
0.1 | 0.097 ± 0.006 | 97.0 |
1.0 | 1.028 ± 0.036 | 102.8 |
10.0 | 9.775 ± 0.409 | 97.8 |
20.0 | 19.6 ± 0.2 | 98.0 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
S. M. Hassan, S.; E. Amr, A.E.-G.; Abd El-Naby, H.; A. Al-Omar, M.; H. Kamel, A.; Khalifa, N.M. Potentiometric PVC-Membrane-Based Sensor for Dimethylamine Assessment Using A Molecularly Imprinted Polymer as A Sensory Recognition Element. Polymers 2019, 11, 1695. https://doi.org/10.3390/polym11101695
S. M. Hassan S, E. Amr AE-G, Abd El-Naby H, A. Al-Omar M, H. Kamel A, Khalifa NM. Potentiometric PVC-Membrane-Based Sensor for Dimethylamine Assessment Using A Molecularly Imprinted Polymer as A Sensory Recognition Element. Polymers. 2019; 11(10):1695. https://doi.org/10.3390/polym11101695
Chicago/Turabian StyleS. M. Hassan, Saad, Abd El-Galil E. Amr, Heba Abd El-Naby, Mohamed A. Al-Omar, Ayman H. Kamel, and Nagy M. Khalifa. 2019. "Potentiometric PVC-Membrane-Based Sensor for Dimethylamine Assessment Using A Molecularly Imprinted Polymer as A Sensory Recognition Element" Polymers 11, no. 10: 1695. https://doi.org/10.3390/polym11101695
APA StyleS. M. Hassan, S., E. Amr, A. E. -G., Abd El-Naby, H., A. Al-Omar, M., H. Kamel, A., & Khalifa, N. M. (2019). Potentiometric PVC-Membrane-Based Sensor for Dimethylamine Assessment Using A Molecularly Imprinted Polymer as A Sensory Recognition Element. Polymers, 11(10), 1695. https://doi.org/10.3390/polym11101695