Molecular Analysis of Retrogradation of Corn Starches
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation
2.3. Relaxation Time Measurements
2.4. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Makowska, A.; Szwengiel, A.; Kubiak, P.; Tomaszewska-Gras, J. Characteristics and structure of starch isolated from triticale. Starch Stärke 2014, 66, 895–902. [Google Scholar] [CrossRef]
- Lewandowicz, J.; Le Thanh-Blicharz, J. Quality of reduced fat mayonnaise prepared with native waxy starches. In Proceedings of the 14th International Conference on Polysaccharides-Glycoscience, Prague, Czech Republic, 7–9 November 2018; Rapkova, R., Hinkova, A., Copikova, J., Sarka, E., Eds.; Czech Chemical Society: Prague, Czech Republic, 2018; pp. 262–265. [Google Scholar]
- Zobel, H.F.; Stephen, A.M. Starch: Structure, analysis, and application. In Food Polysaccharides and Their Applications; Stephen, A.M., Phillips, G.O., Eds.; CRC Press: Boca Raton, FL, USA, 2016; pp. 25–85. ISBN 9780429116162. [Google Scholar]
- Kennedy, H.M. Starch- and Dextrin-Based Adhesives. In Adhesives from Renewable Resources; ACS Publication: Washington, DC, USA, 1989; pp. 326–336. [Google Scholar]
- Jeżowski, P.; Kowalczewski, P.Ł. Starch as a Green Binder for the Formulation of Conducting Glue in Supercapacitors. Polymers (Basel) 2019, 11, 1648. [Google Scholar] [CrossRef] [PubMed]
- Russell, P.L. The ageing of gels from starches of different amylose/amylopectin content studied by differential scanning calorimetry. J. Cereal Sci. 1987, 6, 147–158. [Google Scholar] [CrossRef]
- Yu, S.; Zhang, Y.; Ge, Y.; Zhang, Y.; Sun, T.; Jiao, Y.; Zheng, X.-Q. Effects of Ultrasound Processing on the Thermal and Retrogradation Properties of Nonwaxy Rice Starch. J. Food Process Eng. 2013, 36, 793–802. [Google Scholar] [CrossRef]
- Liu, H.; Yu, L.; Xie, F.; Chen, L. Gelatinization of cornstarch with different amylose/amylopectin content. Carbohydr. Polym. 2006, 65, 357–363. [Google Scholar] [CrossRef]
- Le Thanh-Blicharz, J.; Lubiewski, Z.; Voelkel, E.; Lewandowicz, G. Evaluation of rheological properties of commercial native starches. Zywnosc Nauka Technol. Jakosc/Food Sci. Technol. Qual. 2011, 18, 53–65. [Google Scholar] [CrossRef]
- Jouppila, K.; Kansikas, J.; Roos, Y.H. Factors affecting crystallization and crystallization kinetics in amorphous corn starch. Carbohydr. Polym. 1998, 36, 143–149. [Google Scholar] [CrossRef]
- Fredriksson, H.; Björck, I.; Andersson, R.; Liljeberg, H.; Silverio, J.; Eliasson, A.-C.; Åman, P. Studies on α-amylase degradation of retrograded starch gels from waxy maize and high-amylopectin potato. Carbohydr. Polym. 2000, 43, 81–87. [Google Scholar] [CrossRef]
- Peterson, S.C.; Eller, F.J.; Fanta, G.F.; Felker, F.C.; Shogren, R.L. Effects of critical fluid lipid extraction on the gelatinization and retrogradation of normal dent cornstarch. Carbohydr. Polym. 2007, 67, 390–397. [Google Scholar] [CrossRef]
- Sandhu, K.; Singh, N. Some properties of corn starches II: Physicochemical, gelatinization, retrogradation, pasting and gel textural properties. Food Chem. 2007, 101, 1499–1507. [Google Scholar] [CrossRef]
- Ronda, F.; Roos, Y.H. Gelatinization and freeze-concentration effects on recrystallization in corn and potato starch gels. Carbohydr. Res. 2008, 343, 903–911. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Thompson, D.B. Effects of moisture content and different gelatinization heating temperatures on retrogradation of waxy-type maize starches. Carbohydr. Res. 1998, 314, 221–235. [Google Scholar] [CrossRef]
- Liu, Q.; Thompson, D.B. Retrogradation of du wx and su2 wx Maize Starches After Different Gelatinization Heat Treatments. Cereal Chem. J. 1998, 75, 868–874. [Google Scholar] [CrossRef]
- Chang, Y.-H.; Lin, J.-H. Effects of molecular size and structure of amylopectin on the retrogradation thermal properties of waxy rice and waxy cornstarches. Food Hydrocoll. 2007, 21, 645–653. [Google Scholar] [CrossRef]
- Park, E.Y.; Baik, B.-K.; Lim, S.-T. Influences of temperature-cycled storage on retrogradation and in vitro digestibility of waxy maize starch gel. J. Cereal Sci. 2009, 50, 43–48. [Google Scholar] [CrossRef]
- Cai, L.; Shi, Y.-C. Structure and digestibility of crystalline short-chain amylose from debranched waxy wheat, waxy maize, and waxy potato starches. Carbohydr. Polym. 2010, 79, 1117–1123. [Google Scholar] [CrossRef]
- Fisher, D.K.; Thompson, D.B. Retrogradation of Maize Starch After Thermal Treatment Within and Above the Gelatinization Temperature Range. Cereal Chem. J. 1997, 74, 344–351. [Google Scholar] [CrossRef]
- Liu, H.; Yu, L.; Chen, L.; Li, L. Retrogradation of corn starch after thermal treatment at different temperatures. Carbohydr. Polym. 2007, 69, 756–762. [Google Scholar] [CrossRef]
- Von Borries-Medrano, E.; Jaime-Fonseca, M.R.; Aguilar-Méndez, M.A.; García-Cruz, H.I. Addition of galactomannans and citric acid in corn starch processed by extrusion: Retrogradation and resistant starch studies. Food Hydrocoll. 2018, 83, 485–496. [Google Scholar] [CrossRef]
- Niu, H.; Han, Q.; Cao, C.; Liu, Q.; Kong, B. Short-term retrogradation behaviour of corn starch is inhibited by the addition of porcine plasma protein hydrolysates. Int. J. Biol. Macromol. 2018, 115, 393–400. [Google Scholar] [CrossRef]
- Niu, H.; Zhang, M.; Xia, X.; Liu, Q.; Kong, B. Effect of porcine plasma protein hydrolysates on long-term retrogradation of corn starch. Food Chem. 2018, 239, 172–179. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Xu, J.; Fan, X.; Wang, Q.; Wang, P.; Zhang, Y.; Cui, L.; Yuan, J.; Yu, Y. Effect of disaccharides of different composition and linkage on corn and waxy corn starch retrogradation. Food Hydrocoll. 2016, 61, 531–536. [Google Scholar] [CrossRef]
- Wang, L.; Xu, J.; Fan, X.; Wang, Q.; Wang, P.; Yuan, J.; Yu, Y.; Zhang, Y.; Cui, L. The effect of branched limit dextrin on corn and waxy corn gelatinization and retrogradation. Int. J. Biol. Macromol. 2018, 106, 116–122. [Google Scholar] [CrossRef] [PubMed]
- Dobosz, A.; Sikora, M.; Krystyjan, M.; Tomasik, P.; Lach, R.; Borczak, B.; Berski, W.; Lukasiewicz, M. Short- and long-term retrogradation of potato starches with varying amylose content. J. Sci. Food Agric. 2019, 99, 2393–2403. [Google Scholar] [CrossRef]
- Dobosz, A.; Sikora, M.; Krystyjan, M. Retrogradation of starch with and without non-starch polysaccharide hydrocolloids added—Measurement methods and application thereof. Zywnosc Nauka Technol. Jakosc/Food Sci. Technol. Qual. 2014, 21, 5–20. [Google Scholar] [CrossRef]
- Baranowska, H.M.; Sikora, M.; Dobosz, A.; Krystyjan, M.; Tomasik, P. Retrogradation process of waxy-starches gels without and with gum Arabic investigates by using 1H NMR method. In Proceedings of the The 9th International Conference on Starch Technology, Bangkok, Thailand, 27–28 February 2017. [Google Scholar]
- Stangierski, J.; Baranowska, H.M. The Influence of Heating and Cooling Process on the Water Binding in Transglutaminase-Modified Chicken Protein Preparation, Assessed Using Low-Field NMR. Food Bioprocess Technol. 2015, 8, 2359–2367. [Google Scholar] [CrossRef] [Green Version]
- Kowalczewski, P.Ł.; Walkowiak, K.; Masewicz, Ł.; Bartczak, O.; Lewandowicz, J.; Kubiak, P.; Baranowska, H.M. Gluten-Free Bread with Cricket Powder—Mechanical Properties and Molecular Water Dynamics in Dough and Ready Product. Foods 2019, 8, 240. [Google Scholar] [CrossRef]
- Makowska, A.; Baranowska, H.M.; Michniewicz, J.; Chudy, S.; Kowalczewski, P.Ł. Triticale extrudates – Changes of macrostructure, mechanical properties and molecular water dynamics during hydration. J. Cereal Sci. 2017, 74, 250–255. [Google Scholar] [CrossRef]
- Bloembergen, N.; Purcell, E.M.; Pound, R.V. Relaxation Effects in Nuclear Magnetic Resonance Absorption. Phys. Rev. 1948, 73, 679–712. [Google Scholar] [CrossRef]
- Belton, P.S. NMR of Food Biopolymers. In Advances in Magnetic Resonance in Food Science; Elsevier: Amsterdam, The Netherlands, 1999; pp. 115–125. [Google Scholar]
- Tang, H.; Belton, P.S. Proton Relaxation in Plant Cell Walls and Model Systems. In Advances in Magnetic Resonance in Food Science; Elsevier: Amsterdam, The Netherlands, 1999; pp. 166–184. [Google Scholar]
- Gibiński, M.; Kowalski, S.; Sady, M.; Krawontka, J.; Tomasik, P.; Sikora, M. Thickening of sweet and sour sauces with various polysaccharide combinations. J. Food Eng. 2006, 75, 407–414. [Google Scholar] [CrossRef]
- Kowalski, S.; Sikora, M.; Tomasik, P.; Krystyjan, M. Starch polysaccharide hydrocolloid gels. Polimery 2008, 53, 457–464. [Google Scholar] [CrossRef] [Green Version]
- Sikora, M.; Kowalski, S.; Tomasik, P. Binary hydrocolloids from starches and xanthan gum. Food Hydrocoll. 2008, 22, 943–952. [Google Scholar] [CrossRef]
- Baranowska, H.; Sikora, M.; Kowalski, S.; Tomasik, P. Interactions of potato starch with selected polysaccharide hydrocolloids as measured by low-field NMR. Food Hydrocoll. 2008, 22, 336–345. [Google Scholar] [CrossRef]
- Sikora, M.; Krystyjan, M.; Tomasik, P.; Krawontka, J. Mixed pastes of starches with guar gum. Polimery 2010, 55, 582–590. [Google Scholar] [CrossRef] [Green Version]
- Baranowska, H.M.; Sikora, M.; Krystyjan, M.; Tomasik, P. Analysis of the formation of starch — hydrocolloid binary gels and their structure based on the relaxation times of the water molecules. Polimery 2011, 56, 478–483. [Google Scholar] [CrossRef]
- Baranowska, H.M.; Sikora, M.; Krystyjan, M.; Tomasik, P. Evaluation of the time-dependent stability of starch–hydrocolloid binary gels involving NMR relaxation time measurements. J. Food Eng. 2012, 109, 685–690. [Google Scholar] [CrossRef]
- Krystyjan, M.; Adamczyk, G.; Sikora, M.; Tomasik, P. Long-term storage stability of selected potato starch—Non-starchy hydrocolloid binary gels. Food Hydrocoll. 2013, 31, 270–276. [Google Scholar] [CrossRef]
- Sikora, M.; Dobosz, A.; Krystyjan, M.; Adamczyk, G.; Tomasik, P.; Berski, W.; Kutyła-Kupidura, E.M. Thixotropic properties of the normal potato starch—Locust bean gum blends. LWT 2017, 75, 590–598. [Google Scholar] [CrossRef]
- Fukushima, E.; Roeder, S.B.W. Experimental Pulse NMR. A Nuts and Bolts Approach; Addison-Wesley Publishing Company: London, UK, 1981. [Google Scholar]
- Weglarz, W.P.; Haranczyk, H. Two-dimensional analysis of the nuclear relaxation function in the time domain: The program CracSpin. J. Phys. D Appl. Phys. 2000, 33, 1909–1920. [Google Scholar] [CrossRef]
- Carr, H.Y.; Purcell, E.M. Effects of Diffusion on Free Precession in Nuclear Magnetic Resonance Experiments. Phys. Rev. 1954, 94, 630–638. [Google Scholar] [CrossRef]
- Meiboom, S.; Gill, D. Modified Spin-Echo Method for Measuring Nuclear Relaxation Times. Rev. Sci. Instrum. 1958, 29, 688–691. [Google Scholar] [CrossRef]
- Baranowska, H.M. Water Molecular Properties in Forcemeats and Finely Ground Sausages Containing Plant Fat. Food Biophys. 2011, 6, 133–137. [Google Scholar] [CrossRef]
- Miklos, R.; Mora-Gallego, H.; Larsen, F.H.; Serra, X.; Cheong, L.-Z.; Xu, X.; Arnau, J.; Lametsch, R. Influence of lipid type on water and fat mobility in fermented sausages studied by low-field NMR. Meat Sci. 2014, 96, 617–622. [Google Scholar] [CrossRef] [PubMed]
- Glöggler, S.; Blümich, B.; Appelt, S. NMR Spectroscopy for Chemical Analysis at Low Magnetic Fields. In Modern NMR Methodology; Springer: Berlin/Heidelberg, Germany, 2011; pp. 1–22. [Google Scholar]
- Cameron, I.; Fullerton, G. Properties and size of multiple non-bulk water fractions on proteins and in cells. Water 2014, 4, 76–90. [Google Scholar] [CrossRef]
- Baranowska, H.M.; Rezler, R. Emulsions stabilized using potato starch. Food Sci. Biotechnol. 2015, 24, 1187–1191. [Google Scholar] [CrossRef]
- Baranowska, H.M.; Rezler, R. Water binding analysis of fat-water emulsions. Food Sci. Biotechnol. 2015, 24, 1921–1925. [Google Scholar] [CrossRef]
- Coyle, F.M.; Martin, S.J.; McBrierty, V.J. Dynamics of water molecules in polymers. J. Mol. Liq. 1996, 69, 95–116. [Google Scholar] [CrossRef]
Storage Time (days) | NCS | WCS | HCS | ||||
---|---|---|---|---|---|---|---|
T1 (ms) | T2 (ms) | T1 (ms) | T2 (ms) | T1 (ms) | T2s * (ms) | T2l ** (ms) | |
1 | 1663 ± 5 a | 471 ± 3 a | 1612 ± 5 d | 935 ± 5 a | 1401 ± 4 b | 220 ± 1 b | 785 ± 7 e |
2 | 1569 ± 4 b | 467 ± 5 b | 1650 ± 4 c | 864 ± 4 c | 1257 ± 3 d | 239 ± 4 a | 966 ± 2 b |
10 | 1557 ± 8 b | 468 ± 4 b | 1687 ± 8 b | 876 ± 6 b | 1404 ± 4 b | 172 ± 3 c | 896 ± 4 d |
30 | 1559 ± 7 b | 253 ± 3 c | 1697 ± 4 a | 874 ± 3 b | 1385 ± 4 c | 146 ± 2 e | 922 ± 9 c |
90 | 1280 ± 6 c | 186 ± 3 d | 1614 ± 4 d | 563 ± 8 c | 1411 ± 8 a | 156 ± 5 d | 1010 ± 2 a |
Storage Time (days) | NCS + AG | WCS + AG | HCS + AG | ||||
---|---|---|---|---|---|---|---|
T1 (ms) | T2 (ms) | T1 (ms) | T2 (ms) | T1 (ms) | T2s * (ms) | T2l ** (ms) | |
1 | 1507 ± 4 a | 438 ± 4 b | 1621 ± 4 b | 840 ± 5 c | 1296 ± 2 b | 257 ± 4 a | 1204 ± 4 a |
2 | 1511 ± 2 a | 455 ± 5 a | 1613 ± 4 c | 904 ± 5 a | 1256 ± 2 c | 162 ± 4 c | 808 ± 5 e |
10 | 1483 ± 4 b | 419 ± 5 c | 1608 ± 5 d | 871 ± 4 b | 1339 ± 1 a | 225 ± 3 b | 1138 ± 5 b |
30 | 1458 ± 5 c | 277 ± 4 d | 1635 ± 2 a | 843 ± 5 c | 1292 ± 4 b | 129 ± 4 d | 849 ± 4 d |
90 | 1365 ± 1 d | 224 ± 7 e | 1549 ± 3 e | 790 ± 3 d | 1260 ± 2 c | 165 ± 5 c | 1018 ± 7 c |
Storage Time (days) | NCS + GG | WCS + GG | HCS + GG | ||||
---|---|---|---|---|---|---|---|
T1 (ms) | T2 (ms) | T1 (ms) | T2 (ms) | T1 (ms) | T2s * (ms) | T2l ** (ms) | |
1 | 1522 ± 2 a | 470 ± 4 a | 1700 ± 3 ab | 871 ± 5 a | 1228 ± 2 c | 246 ± 5 a | 1142 ± 4 a |
2 | 1415 ± 2 c | 443 ± 5 b | 1709 ± 3 a | 811 ± 5 c | 1194 ± 2 d | 136 ± 5 d | 778 ± 5 d |
10 | 1379 ± 4 d | 446 ± 7 b | 1690 ± 4 b | 840 ± 7 b | 1298 ± 4 b | 218 ± 7 b | 989 ± 4 c |
30 | 1462 ± 2 b | 355 ± 7 c | 1666 ± 3 c | 692 ± 5 d | 1346 ± 3 a | 136 ± 8 d | 1017 ± 4 b |
90 | 1367 ± 1 e | 267 ± 5 d | 1596 ± 3 d | 499 ± 6 e | 1300 ± 3 b | 145 ± 5 c | 994 ± 2 c |
Storage Time (days) | NCS + XG | WCS + XG | HCS + XG | ||||
---|---|---|---|---|---|---|---|
T1 (ms) | T2 (ms) | T1 (ms) | T2 (ms) | T1 (ms) | T2s * (ms) | T2l ** (ms) | |
1 | 1558 ± 4 d | 869 ± 5 ab | 1574 ± 2 e | 871 ± 4 ab | 1362 ± 2 b | 358 ± 2 a | 497 ± 6 c |
2 | 1587 ± 4 c | 839 ± 4 a | 1597 ± 2 c | 877 ± 5 a | 1225 ± 2 d | 298 ± 3 b | 459 ± 5 e |
10 | 1642 ± 5 b | 877 ± 4 b | 1612 ± 4 b | 865 ± 4 b | 1337 ± 1 c | 225 ± 2 c | 801 ± 5 a |
30 | 1657 ± 4 a | 710 ± 6 c | 1677 ± 2 a | 842 ± 4 c | 1388 ± 4 a | 153 ± 5 e | 617 ± 4 b |
90 | 1542 ± 7 cd | 698 ± 5 bc | 1582 ± 3 d | 653 ± 5 d | 1225 ± 4 d | 183 ± 2 d | 472 ± 5 d |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sikora, M.; Krystyjan, M.; Dobosz, A.; Tomasik, P.; Walkowiak, K.; Masewicz, Ł.; Kowalczewski, P.Ł.; Baranowska, H.M. Molecular Analysis of Retrogradation of Corn Starches. Polymers 2019, 11, 1764. https://doi.org/10.3390/polym11111764
Sikora M, Krystyjan M, Dobosz A, Tomasik P, Walkowiak K, Masewicz Ł, Kowalczewski PŁ, Baranowska HM. Molecular Analysis of Retrogradation of Corn Starches. Polymers. 2019; 11(11):1764. https://doi.org/10.3390/polym11111764
Chicago/Turabian StyleSikora, Marek, Magdalena Krystyjan, Anna Dobosz, Piotr Tomasik, Katarzyna Walkowiak, Łukasz Masewicz, Przemysław Łukasz Kowalczewski, and Hanna Maria Baranowska. 2019. "Molecular Analysis of Retrogradation of Corn Starches" Polymers 11, no. 11: 1764. https://doi.org/10.3390/polym11111764
APA StyleSikora, M., Krystyjan, M., Dobosz, A., Tomasik, P., Walkowiak, K., Masewicz, Ł., Kowalczewski, P. Ł., & Baranowska, H. M. (2019). Molecular Analysis of Retrogradation of Corn Starches. Polymers, 11(11), 1764. https://doi.org/10.3390/polym11111764