Phytic Acid Intercalated Graphene Oxide for Anticorrosive Reinforcement of Waterborne Epoxy Resin Coating
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of PA–GO
2.3. Preparation of the Composite Coatings
2.4. Characterization of Materials
3. Results and Discussion
3.1. Characterization of GO and PA-GO
3.2. Evaluation of Protective Performance
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Contri, G.; Barra, G.M.O.; Ramoa, S.D.A.S.; Merlini, C.; Ecco, L.G.; Souza, F.S.; Spinelli, A. Epoxy coating based on montmorillonite-polypyrrole: Electrical properties and prospective application on corrosion protection of steel. Prog. Org. Coat. 2018, 114, 201–207. [Google Scholar] [CrossRef]
- Mostafaei, A.; Nasirpouri, F. Electrochemical study of epoxy coating containing novel conducting nanocomposite comprising polyaniline–ZnO nanorods on low carbon steel. Corros. Eng. Sci. Technol. 2013, 43, 513–524. [Google Scholar] [CrossRef]
- Cui, M.; Ren, S.; Zhao, H.; Xue, Q.; Wang, L. Polydopamine coated graphene oxide for anticorrosive reinforcement of water-borne epoxy coating. Chem. Eng. J. 2017. [Google Scholar] [CrossRef]
- Chen, F.; Liu, P. Conducting Polyaniline Nanoparticles and Their Dispersion for Waterborne Corrosion Protection Coatings. ACS Appl. Mater. Interfaces 2011, 3, 2694–2702. [Google Scholar] [CrossRef]
- Cui, M.; Ren, S.; Chen, J.; Liu, S.; Zhang, G.; Zhao, H.; Wang, L.; Xue, Q. Anticorrosive performance of waterborne epoxy coatings containing water-dispersible hexagonal boron nitride (h-BN) nanosheets. Appl. Surf. Sci. 2017, 397, 77–86. [Google Scholar] [CrossRef]
- Guadagno, L.; Vertuccio, L.; Sorrentino, A. Mechanical and barrier properties of epoxy resin filled with multi-walled carbon nanotubes. Carbon 2009, 47, 2419–2430. [Google Scholar] [CrossRef]
- Mohan, T.P.; Kumar, M.R.; Velmurugan, R. Mechanical and barrier properties of epoxy polymer filled with nanolayered silicate clay particles. J. Mater. Sci. 2006, 41, 2929–2937. [Google Scholar] [CrossRef]
- Nematollahi, M.; Heidarian, M.; Peikari, M. Comparison between the effect of nanoglass flake and montmorillonite organoclay on corrosion performance of epoxy coating. Corros. Sci. 2010, 52, 1809–1817. [Google Scholar] [CrossRef]
- Ruhi, G.; Bhandari, H.; Dhawan, S.K. Designing of corrosion resistant epoxy coatings embedded with polypyrrole/SiO2 composite. Prog. Org. Coat. 2014, 77, 1484–1498. [Google Scholar] [CrossRef]
- Rashvand, M.; Ranjbar, Z. Effect of nano-ZnO particles on the corrosion resistance of polyurethane-based waterborne coatings immersed in sodium chloride solution via EIS technique. Prog. Org. Coat. 2013, 76, 1413–1417. [Google Scholar] [CrossRef]
- Wang, N.; Cheng, K.; Wu, H.; Wang, C.; Wang, Q.; Wang, H. Effect of nano-sized mesoporous silica MCM-41 and MMT on corrosion properties of epoxy coating. Prog. Org. Coat. 2012, 75, 386–391. [Google Scholar] [CrossRef]
- Wang, N.; Wu, Y.; Cheng, K.; Zhang, J. Investigation on anticorrosion performance of polyaniline-mesoporous MCM-41 composites in new water-based epoxy coating. Mater. Corros. 2014, 65, 968–976. [Google Scholar] [CrossRef]
- Wang, N.; Fu, W.; Zhang, J. Corrosion performance of waterborne epoxy coatings containing polyethylenimine treated mesoporous-TiO2 nanoparticles on mild steel. Prog. Org. Coat. 2015, 89, 114–122. [Google Scholar] [CrossRef]
- Wang, N.; Gao, H.; Zhang, J.; Li, L.; Fan, X.; Diao, X. Anticorrosive waterborne epoxy (EP) coatings based on sodium tripolyphosphate-pillared layered double hydroxides (STPP-LDHs). Prog. Org. Coat. 2019, 135, 74–81. [Google Scholar] [CrossRef]
- Javidparvar, A.A.; Naderi, R.; Ramezanzadeh, B. Designing a potent anti-corrosion system based on graphene oxide nanosheets non-covalently modified with cerium/benzimidazole for selective delivery of corrosion inhibitors on steel in NaCl media. J. Mol. Liq. 2019, 284, 415–430. [Google Scholar] [CrossRef]
- Ahmad, H.; Fan, M.; Hui, D. Graphene oxide incorporated functional materials: A review. Compos. Part B Eng. 2018, 145, 270–280. [Google Scholar] [CrossRef]
- Shi, Y.; Feng, J.; Lin, X.; Zhang, L.; Yuan, J.; Zhang, Q. One-step hydrothermal synthesis of three-dimensional nitrogen-doped reduced grapheme oxide hydrogels anchored PtPd alloyed nanoparticles for ethylene glycol oxidation and hydrogen evolution reactions. Electrochim. Acta 2019, 293, 504–513. [Google Scholar] [CrossRef]
- Zhu, X.; Lv, Z.; Feng, J.; Yuan, P.; Zhang, L.; Chen, J. Controlled fabrication of well-dispersed AgPd nanoclusters supported on reduced grapheme oxide with highly enhanced catalytic properties towards 4-nitrophenol reduction. J. Colloid Interface Sci. 2018, 516, 355–363. [Google Scholar] [CrossRef]
- Zhang, X.; Zhu, X.; Feng, J.; Wang, A. Solvothermal synthesis of N-doped graphene supported PtCo nanodendrites with highly catalytic activity for 4-nitrophenol reduction. Appl. Surf. Sci. 2018, 428, 798–808. [Google Scholar] [CrossRef]
- Kasaeian, M.; Ghasemi, E.; Ramezanzadeh, B.; Mahdavian, M.; Bahlakeh, G. A combined experimental and electronic-structure quantum mechanics approach for studying the kinetics and adsorption characteristics of zinc nitrate hexahydrate corrosion inhibitor on the graphene oxide nanosheets. Appl. Surf. Sci. 2018, 462, 963–979. [Google Scholar] [CrossRef]
- Kasaeian, M.; Ghasemi, E.; Ramezanzadeh, B.; Mahdavian, M.; Bahlakeh, G. Construction of a highly effective self-repair corrosion-resistant epoxy composite through impregnation of 1H-Benzimidazole corrosion inhibitor modified graphene oxide nanosheets (GO-BIM). Corros. Sci. 2018, 145, 119–134. [Google Scholar] [CrossRef]
- Javidparvar, A.A.; Naderi, R.; Ramezanzadeh, B.; Bahlakeh, G. Graphene oxide as a pH-sensitive carrier for targeted delivery of eco-friendly corrosion inhibitors in chloride solution: Experimental and theroretical investigations. J. Ind. Eng. Chem. 2019, 72, 196–213. [Google Scholar] [CrossRef]
- Kasaeian, M.; Ghasemi, E.; Ramezanzadeh, B.; Mahdavian, M. Graphene oxide as a potential nanocarrier for Zn(II) to fabricate a dual-functional active/passive protection; sorption/desorption characteristics and electrochemical evaluation. J. Ind. Eng. Chem. 2019, 73, 162–174. [Google Scholar] [CrossRef]
- Wu, F.; Liang, J.; Li, W. Electrochemical deposition of Mg(OH)2/GO composite films for corrosion protection of magnesium alloys. J. Magnes. Alloys 2015, 3, 231–236. [Google Scholar] [CrossRef]
- Fayyad, E.M.; Sadasivuni, K.K.; Ponnamma, D. Oleic acid-grafted chitosan/graphene oxide composite coating for corrosion protection of carbon steel. Carbohydr. Polym. 2016, 151, S0144861716306634. [Google Scholar] [CrossRef]
- Parhizkar, N.; Ramezanzadeh, B.; Shahrabi, T. Corrosion protection and adhesion properties of the epoxy coating applied on the steel substrate pre-treated by a sol-gel based silane coating filled with amino and isocyanate silane functionalized graphene oxide nanosheets. Appl. Surf. Sci. 2018, 439, S016943321733893X. [Google Scholar] [CrossRef]
- Wang, N.; Gao, H.; Zhang, J.; Kang, P. Effect of Graphene Oxide/ZSM-5 Hybrid on Corrosion Resistance of Waterborne Epoxy Coating. Coatings 2018, 8, 179. [Google Scholar] [CrossRef]
- Hao, Y.; Sani, L.A.; Ge, T.; Fang, Q. Phytic acid doped polyaniline containing epoxy coatings for corrosion protection of q235 carbon steel. Appl. Surf. Sci. 2017, 419, S0169433217313910. [Google Scholar] [CrossRef]
- Hummers, W.S., Jr.; Offeman, R.E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339. [Google Scholar] [CrossRef]
- ASTM. ASTM B117-03 Standard Practice for Operating Salt Spray (Fog) Apparatus; ASTM International: West Conshohocken, PA, USA, 2003. [Google Scholar]
- Amrollahi, S.; Ramezanzadeh, B.; Yari, H.; Ramezanzadeh, M.; Mahdavian, M. Synthesis of polyaniline-modified graphene oxide for obtaining a high performance epoxy nanocomposite film with excellent UV blocking/anti-oxidant/ anti-corrosion capabilities. Compos. Part B Eng. 2019, 173, 106804. [Google Scholar] [CrossRef]
- Bragg, W.H.; Bragg, W.L. The reflection of X-rays by crystals. Proc. R Soc. Lond A 1913, 88, 428–438. [Google Scholar] [CrossRef]
- Martin, L.; Martinez, H.; Poinot, D.; Pecquenard, B.; Cras, F.L. Direct observation of important morphology and composition changes at the surface of the CuO conversion material in lithium batteries. J. Power Sour. 2014, 248, 861–873. [Google Scholar] [CrossRef]
- Feliu, S.; Barranco, V. Characterization of a lacquer film formulated with phosphating reagents for corrosion protection of galvanized substrates. J. Compos. Technol. Res. 2004, 1, 93–102. [Google Scholar] [CrossRef]
- Brow, R.K. An xps study of oxygen bonding in zinc phosphate and zinc borophosphate glasses. J. Non-Cryst. Solids 1996, 194, 267–273. [Google Scholar] [CrossRef]
- Dedryvère, R.; Gireaud, L.; Grugeon, S.; Laruelle, S.; Tarascon, J.M.; Gonbeau, D. Characterization of lithium alkyl carbonates by X-ray photoelectron spectroscopy: Experimental and theoretical study. J. Phys. Chem. B 2005, 109, 15868–15875. [Google Scholar] [CrossRef]
- Ghazi, A.; Ghasemi, E.; Mahdavian, M.; Ramezanzadeh, B.; Rostami, M. The application of benzimidazole and zinc cations intercalated sodium montmorillonite as smart ion exchange inhibiting pigments in the epoxy ester coating. Corros. Sci. 2015, 94, 207–217. [Google Scholar] [CrossRef]
- Ali, A.; Reza, N.; Bahram, R. Epoxy-polyamide nanocomposite coating with graphene oxide as cerium nanocontainer generating effective dual active/barrier corrosion protection. Compos. Part B Eng. 2019, 172, 363–375. [Google Scholar]
- Niknahad, M.; Moradian, S.; Mirabedini, S.M. The adhesion properties and corrosion performance of differently pretreated epoxy coatings on an aluminium alloy. Corros. Sci. 2010, 52, 1948–1957. [Google Scholar] [CrossRef]
- Wang, N.; Diao, X.; Zhang, J.; Kang, P. Corrosion Resistance of Waterborne Epoxy Coatings by Incorporation of Dopamine Treated Mesoporous-TiO2 Particles. Coatings 2018, 8, 209. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Yu, P.H.; Wu, J.J.; Chen, F.; Li, Y.D.; Zhang, Y.L.; Zuo, Y.; Oi, Y.G.L. Enhancement of anticorrosion protection via inhibitor-loaded ZnAlCe-LDH nanocontainers embedded in sol-gel coatings. J. Coat. Technol. Res. 2018, 15, 303–313. [Google Scholar] [CrossRef]
- Fan, F.; Zhou, C.; Wang, X.; Szpunar, J. Layer-by-Layer Assembly of a Self-Healing Anticorrosion Coating on Magnesium Alloys. ACS Appl. Mater. Interfaces 2015, 7, 27271–27278. [Google Scholar] [CrossRef] [PubMed]
- Das, M.; Biswas, A.; Kumar Kundu, B.; Adilia Januário Charmier, M.; Mukherjee, A.; Mobin, S.M. Enhanced pseudo-halide promoted corrosion inhibition by biologically active zinc(ii) schiff base complexes. Chem. Eng. J. 2019, 357, 447–457. [Google Scholar] [CrossRef]
- Ramezanzadeh, B.; Niroumandrad, S.; Ahmadi, A.; Mahdavian, M.; Mohamadzadeh Moghadam, M.H. Enhancement of barrier and corrosion protection performance of an epoxy coating through wet transfer of amino functionalized graphene oxide. Corros. Sci. 2016, 103, 283–304. [Google Scholar] [CrossRef]
Samples | Waterborne Epoxy Resin (g) | Pigment (g) | Curing Agent (g) | Deionized Water (g) |
---|---|---|---|---|
Neat EP | 20 | - | 8 | 6 |
GO (1.0 wt.%)-EP | 20 | 0.2 | 8 | 6 |
PA-GO (0.5 wt.%)-EP | 20 | 0.1 | 8 | 6 |
PA-GO (0.7 wt.%)-EP | 20 | 0.14 | 8 | 6 |
PA-GO (1.0 wt.%)-EP | 20 | 0.2 | 8 | 6 |
PA-GO (1.5 wt.%)-EP | 20 | 0.3 | 8 | 6 |
Samples | Time (h) | Rs (Ω·cm2) | R1 (Ω·cm2) | CPEc (F/cm2) | R2 (Ω·cm2) | CPEdl (F/cm2) | W (Ω·cm2) | Model |
---|---|---|---|---|---|---|---|---|
EP | 48 | 7.864 × 101 | 5.397 × 106 | 1.576 × 10−7 | 7.523 × 105 | 1.003 × 10−8 | - | 2 |
540 | 3.93 × 101 | 6.264 × 105 | 4.207 × 10−7 | 1.699 × 105 | 2.265 × 10−4 | 8.956 × 10−16 | 3 | |
1080 | 3.856 × 101 | 2.960 × 103 | 1.547 × 10−7 | 6.149 × 105 | 9.825 × 10−8 | 8.873 × 10−5 | 3 | |
GO (1.0 wt.%)/EP | 48 | 2.724 × 102 | 1.088 × 108 | 1.012 × 10−9 | 4.140 × 104 | 5.786 × 10−9 | - | 2 |
540 | 8.210 × 102 | 2.916 × 107 | 4.485 × 10−10 | 2.330 × 107 | 2.736 × 10−9 | - | 2 | |
1080 | 4.514 × 102 | 7.107 × 106 | 7.430 × 10−10 | 1.634 × 107 | 9.620 × 10−10 | - | 2 | |
PA-GO (1.0 wt.%)/EP | 48 | 8.047 × 101 | 5.646 × 109 | 5.834 × 10−10 | - | - | - | 1 |
540 | 1 × 102 | 8.398 × 107 | 3.093 × 10−9 | 9.805 × 107 | 6.177 × 10−9 | - | 2 | |
1080 | 1 × 103 | 1.422 × 108 | 2.289 × 10−9 | 3.896 × 104 | 9.446 × 10−10 | - | 2 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, N.; Gao, H.; Zhang, J.; Qin, Y.; Wang, D. Phytic Acid Intercalated Graphene Oxide for Anticorrosive Reinforcement of Waterborne Epoxy Resin Coating. Polymers 2019, 11, 1950. https://doi.org/10.3390/polym11121950
Wang N, Gao H, Zhang J, Qin Y, Wang D. Phytic Acid Intercalated Graphene Oxide for Anticorrosive Reinforcement of Waterborne Epoxy Resin Coating. Polymers. 2019; 11(12):1950. https://doi.org/10.3390/polym11121950
Chicago/Turabian StyleWang, Na, Huiying Gao, Jing Zhang, Ye Qin, and Deyi Wang. 2019. "Phytic Acid Intercalated Graphene Oxide for Anticorrosive Reinforcement of Waterborne Epoxy Resin Coating" Polymers 11, no. 12: 1950. https://doi.org/10.3390/polym11121950
APA StyleWang, N., Gao, H., Zhang, J., Qin, Y., & Wang, D. (2019). Phytic Acid Intercalated Graphene Oxide for Anticorrosive Reinforcement of Waterborne Epoxy Resin Coating. Polymers, 11(12), 1950. https://doi.org/10.3390/polym11121950