Selectivity of Copper by Amine-Based Ion Recognition Polymer Adsorbent with Different Aliphatic Amines
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Methodology
2.2.1. Preparation of Amine Immobilized GMA-g-NWF
2.2.2. Preparation of Ion Recognition Polymer (IRP) Adsorbent
2.2.3. Batch Adsorption Test
2.3. Structural and Morphological Confirmation
3. Results and Discussion
3.1. Functionalization of Aliphatic Amine
3.1.1. Effect of Amine Concentration on Amine Density
3.1.2. Effect of Grafting Yield on Amine Density
3.1.3. Effect of Reaction Temperature on Amine Density
3.1.4. Effect of Reaction Time onto Amine Density
3.2. Characteristics of the Amine Immobilized GMA-g-NWF and IRP
3.2.1. Surface Morphological Analysis
3.2.2. Elemental Composition Analysis
3.2.3. Water Absorptive Capacity Analysis
3.3. Metal Ions Adsorption Performance
3.3.1. Adsorption Capacity of Amine Immobilized GMA-g-NWF and IRP Samples Towards Cu
3.3.2. Selectivity of Amine Immobilized GMA-g-NWF and IRP Samples in Binary Metal Species System
3.3.3. Adsorption Mechanism
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Guidelines for drinking-water quality. WHO Chronicle 2011, 38, 104–108. [Google Scholar]
- Chuah, T.G.; Jumasiah, A.; Azni, I.; Katayon, S.; Choong, S.T. Rice husk as a potentially low-cost biosorbent for heavy metal and dye removal: An overview. Desalination 2005, 175, 305–316. [Google Scholar] [CrossRef]
- Mrudula, V.; Vijaya, T.; Mouli, K.; Jyothi, U.; Aishwarya, S.; Reddy, V. Novel method for removal of heavy metals by using low cost absorbents. Indo Am. J. Pharm. Res. 2016, 6, 5472–5480. [Google Scholar]
- Ma, H.; Yao, S.; Li, J.; Cao, C.; Wang, M. A mild method of amine-type adsorbents syntheses with emulsion graft polymerization of glycidyl methacrylate on polyethylene non-woven fabric by pre-irradiation. Radiat. Phys. Chem. 2012, 81, 1393–1397. [Google Scholar] [CrossRef]
- Hoshina, H.; Seko, N.; Ueki, Y.; Tamada, M. Synthesis of graft adsorbent with N-methyl-D-glucamine for boron adsorption. J. Ion Exch. 2007, 18, 236–239. [Google Scholar] [CrossRef]
- Selambakkannu, S.; Othman, N.A.F.; Bakar, K.A.; Shukor, S.A.; Karim, Z.A. A kinetic and mechanistic study of adsorptive removal of metal ions by imidazole-functionalized polymer graft banana fiber. Radiat. Phys. Chem. 2018, 153, 58–69. [Google Scholar] [CrossRef]
- Reyna, J.; García-López, M.C.; Pérez-Rodríguez, N.; Elizondo-Martínez, P.; Maldonado-Textle, H.; Rivas, B.; Sánchez-Anguiano, M. Polystyrene degraded and functionalized with acrylamide for removal of Pb (II) metal ions. Polym. Bull. 2019, 76, 2559–2578. [Google Scholar] [CrossRef]
- Liu, C.; Bai, R.; San Ly, Q. Selective removal of copper and lead ions by diethylenetriamine-functionalized adsorbent: Behaviors and mechanisms. Water Res. 2008, 42, 1511–1522. [Google Scholar] [CrossRef]
- Chen, Y.; Zhu, H.; Xiong, J.; Zhang, C.; Li, Y. Preparation and application of novel chitosan-cellulose composite materials to adsorb Pb (II) and Cr (VI) ions from water. J. Bioresour. Bioprod. 2017, 2, 175–183. [Google Scholar]
- Liu, C.; Bai, R. Extended study of DETA-functionalized PGMA adsorbent in the selective adsorption behaviors and mechanisms for heavy metal ions of Cu, Co, Ni, Zn, and Cd. J. Colloid Interface Sci. 2010, 350, 282–289. [Google Scholar] [CrossRef]
- Liu, C.; Bai, R.; Hong, L.; Liu, T. Functionalization of adsorbent with different aliphatic polyamines for heavy metal ion removal: Characteristics and performance. J. Colloid Interface Sci. 2010, 345, 454–460. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Morita, K.; Hoshina, H.; Seko, N. Synthesis of amine-type adsorbents with emulsion graft polymerization of 4-hydroxybutyl acrylate glycidylether. Mater. Sci. Appl. 2011, 2, 776. [Google Scholar] [CrossRef] [Green Version]
- Paredes, B.; González, S.; Rendueles, M.; Villa-García, M.A.; Díaz, M. Influence of the amination conditions on the textural properties and chromatographic behaviour of amino-functionalized glycidyl methacrylate-based particulate supports. Acta Mater. 2003, 51, 6189–6198. [Google Scholar] [CrossRef]
- Bayramoğlu, G.; Arıca, M.Y. Ethylenediamine grafted poly (glycidylmethacrylate-co-methylmethacrylate) adsorbent for removal of chromate anions. Sep. Purif. Technol. 2005, 45, 192–199. [Google Scholar] [CrossRef]
- Atia, A.A.; Donia, A.M.; El-Enein, S.A.; Yousif, A.M. Effect of chain length of aliphatic amines immobilized on a magnetic glycidyl methacrylate resin towards the uptake behavior of Hg (II) from aqueous solutions. Sep. Sci. Technol. 2007, 42, 403–420. [Google Scholar] [CrossRef]
- Kampalanonwat, P.; Supaphol, P. The study of competitive adsorption of heavy metal ions from aqueous solution by aminated polyacrylonitrile nanofiber mats. Energy Procedia 2014, 56, 142–151. [Google Scholar] [CrossRef] [Green Version]
- Hubicki, Z.; Kołodyńska, D. Selective removal of heavy metal ions from waters and waste waters using ion exchange methods. Ion Exch. Technol. 2012, 193–240. [Google Scholar] [CrossRef] [Green Version]
- Branger, C.; Meouche, W.; Margaillan, A. Recent advances on ion-imprinted polymers. React. Funct. Polym. 2013, 73, 859–875. [Google Scholar] [CrossRef]
- Princi, E.; Vicini, S.; Proietti, N.; Capitani, D. Grafting polymerization on cellulose based textiles: A 13C solid state NMR characterization. Eur. Polym. J. 2005, 41, 1196–1203. [Google Scholar] [CrossRef]
- Sekine, A.; Seko, N.; Tamada, M.; Suzuki, Y. Biodegradable metal adsorbent synthesized by graft polymerization onto nonwoven cotton fabric. Radiat. Phys. Chem. 2010, 79, 16–21. [Google Scholar] [CrossRef]
- Büyüktiryaki, S.; Say, R.; Ersöz, A.; Birlik, E.; Denizli, A. Selective preconcentration of thorium in the presence of UO22+, Ce3+ and La3+ using Th (IV)-imprinted polymer. Talanta 2005, 67, 640–645. [Google Scholar] [CrossRef] [PubMed]
- Dilli, S.; Garnett, J.; Martin, E.; Phuoc, D. The role of additives in the radiation induced copolymerization of monomers to cellulose. J. Polym. Sci. Part C Polym. Symp. 1972, 37, 57–118. [Google Scholar] [CrossRef]
- Kimmins, S.D.; Wyman, P.; Cameron, N.R. Amine-functionalization of glycidyl methacrylate-containing emulsion-templated porous polymers and immobilization of proteinase K for biocatalysis. Polymer 2014, 55, 416–425. [Google Scholar] [CrossRef] [Green Version]
- Jimeno, A.; Goyanes, S.; Eceiza, A.; Kortaberria, G.; Mondragon, I.; Corcuera, M. Effects of amine molecular structure on carbon nanotubes functionalization. J. Nanosci. Nanotechnol. 2009, 9, 6222–6227. [Google Scholar] [CrossRef] [PubMed]
- Madrid, J.F.; Nuesca, G.M.; Abad, L.V. Amine functionalized radiation-induced grafted water hyacinth fibers for Pb 2+, Cu 2+ and Cr 3+ uptake. Radiat. Phys. Chem. 2014, 97, 246–252. [Google Scholar] [CrossRef]
- Selambakkannu, S.; Othman, N.A.F.; Mohamad, S.F.; Bakar, K.A.; Saidi, H. Functionalization of Gma-Grafted Banana Fibers with Ethylenediamne for Metal Ion Adsorption. Adv. Environ. Biol. 2015, 9, 58–63. [Google Scholar]
- Madrid, J.F.; Nuesca, G.M.; Abad, L.V. Gamma radiation-induced grafting of glycidyl methacrylate (GMA) onto water hyacinth fibers. Radiat. Phys. Chem. 2013, 85, 182–188. [Google Scholar] [CrossRef]
- Makuuchi, K.; Cheng, S. Radiation Processing of Polymer Materials and Its Industrial Applications; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Petrovich, J. FTIR and DSC of Polymer Films Used for Packaging: LLDPE, PP and PVDC; Shape American High School: Troy, NY, USA, 2015. [Google Scholar]
- Sharif, J.; Mohamad, S.F.; Othman, N.A.F.; Bakaruddin, N.A.; Osman, H.N.; Güven, O. Graft copolymerization of glycidyl methacrylate onto delignified kenaf fibers through pre-irradiation technique. Radiat. Phys. Chem. 2013, 91, 125–131. [Google Scholar] [CrossRef]
- Karagoz, B.; Durmaz, Y.Y.; Gacal, B.N.; Bicak, N.; Yagci, Y. Functionalization of poly (divinylbenzene) microspheres by combination of hydrobromination and click chemistry processes: A model study. Des. Monomers Polym. 2009, 12, 511–522. [Google Scholar] [CrossRef] [Green Version]
- Casarin, J.; Junior, A.C.G.; Segatelli, M.G.; Tarley, C.R.T. Insight into the performance of molecularly imprinted poly (methacrylic acid) and polyvinylimidazole for extraction of imazethapyr in aqueous medium. Chem. Eng. J. 2018, 343, 583–596. [Google Scholar] [CrossRef]
- Furukawa, H.; Gándara, F.; Zhang, Y.-B.; Jiang, J.; Queen, W.L.; Hudson, M.R.; Yaghi, O.M. Water adsorption in porous metal–organic frameworks and related materials. J. Am. Chem. Soc. 2014, 136, 4369–4381. [Google Scholar] [CrossRef] [PubMed]
- Puigdomenech, I. Medusa and Hydra: Software for Chemical Equilibrium Calculations; Royal Institute of Technology: Stockholm, Sweden, 2004. [Google Scholar]
- Bajpai, S.K.; Jain, A. Removal of copper (II) from aqueous solution using spent tea leaves (STL) as a potential sorbent. SA J. Radiol. 2010, 36, 221–228. [Google Scholar]
- Wang, F.; Pan, Y.; Cai, P.; Guo, T.; Xiao, H. Single and binary adsorption of heavy metal ions from aqueous solutions using sugarcane cellulose-based adsorbent. Bioresour. Technol. 2017, 241, 482–490. [Google Scholar] [CrossRef] [PubMed]
- Erdem, Ö.; Saylan, Y.; Andaç, M.; Denizli, A. Molecularly imprinted polymers for removal of metal ions: An alternative treatment method. Biomimetics 2018, 3, 38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, S.-J.; Seo, M.-K. Interface Science and Composites; Academic Press: Oxford, UK, 2011; Volume 18. [Google Scholar]
- Bindu, M.; Mathew, B. Design of copper ion selective polymers by molecular imprinting approach. Int. J. Latest Res. Sci. Technol. 2015, 4, 154–160. [Google Scholar]
- Meylheuc, T.; Methivier, C.; Renault, M.; Herry, J.-M.; Pradier, C.-M.; Bellon-Fontaine, M.N. Adsorption on stainless steel surfaces of biosurfactants produced by gram-negative and gram-positive bacteria: Consequence on the bioadhesive behavior of Listeria monocytogenes. Colloids Surf. B Biointerfaces 2006, 52, 128–137. [Google Scholar] [CrossRef]
- Kamra, T.; Chaudhary, S.; Xu, C.; Montelius, L.; Schnadt, J.; Ye, L. Covalent immobilization of molecularly imprinted polymer nanoparticles on a gold surface using carbodiimide coupling for chemical sensing. J. Colloid Interface Sci. 2016, 461, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Borghi, E.; Solari, P.L.; Beltramini, M.; Bubacco, L.; Di Muro, P.; Salvato, B. Oxidized derivatives of octopus vulgaris and carcinus aestuarii hemocyanins at pH 7.5 and related models by X-ray absorption spectroscopy. Biophys. J. 2002, 82, 3254–3268. [Google Scholar] [CrossRef] [Green Version]
- Yano, J.; Pushkar, Y.; Glatzel, P.; Lewis, A.; Sauer, K.; Messinger, J.; Bergmann, U.; Yachandra, V. High-resolution Mn EXAFS of the oxygen-evolving complex in photosystem II: Structural implications for the Mn4Ca cluster. J. Am. Chem. Soc. 2005, 127, 14974–14975. [Google Scholar] [CrossRef] [Green Version]
- Gaur, A.; Shrivastava, B.; Gaur, D.; Prasad, J.; Srivastava, K.; Jha, S.; Bhattacharyya, D.; Poswal, A.; Deb, S. EXAFS study of binuclear hydroxo-bridged copper (II) complexes. J. Coord. Chem. 2011, 64, 1265–1275. [Google Scholar] [CrossRef]
Aliphatic Amines | 50:50 | 60:40 | 70:30 |
---|---|---|---|
AD (mmol/g−ad) | AD (mmol/g−ad) | AD (mmol/g−ad) | |
EDA | 5.12 | 4.12 | 3.80 |
DETA | 4.06 | 3.42 | 3.39 |
TETA | 3.04 | 2.98 | 3.08 |
TEPA | 2.56 | 2.59 | 2.58 |
100% | 150% | 200% | 250% | |||||
---|---|---|---|---|---|---|---|---|
Aliphatic Amines | Dg (%) | AD (mmol/g−ad) | Dg (%) | AD (mmol/g−ad) | Dg (%) | AD (mmol/g−ad) | Dg (%) | AD (mmol/g−ad) |
EDA | 105.13 | 3.35 | 151.46 | 2.36 | 205.58 | 2.34 | 251.32 | 1.64 |
DETA | 3.54 | 3.03 | 2.53 | 1.92 | ||||
TETA | 4.01 | 3.43 | 2.70 | 2.00 | ||||
TEPA | 4.20 | 3.64 | 3.09 | 2.26 |
Aliphatic Amines | 60 °C | 70 °C | 80 °C |
---|---|---|---|
AD (mmol/g−ad) | AD (mmol/g−ad) | AD (mmol/g−ad) | |
EDA | 3.85 | 3.90 | 3.93 |
DETA | 3.31 | 3.50 | 3.52 |
TETA | 2.97 | 3.25 | 3.28 |
TEPA | 2.49 | 2.65 | 2.71 |
Time (min) | EDA | DETA | TETA | TEPA |
---|---|---|---|---|
AD (mmol/g−ad) | AD (mmol/g−ad) | AD (mmol/g−ad) | AD (mmol/g−ad) | |
15 | 2.89 | 2.41 | 1.61 | 1.21 |
30 | 3.80 | 3.16 | 2.64 | 2.15 |
45 | 3.82 | 2.97 | 2.52 | 2.36 |
60 | 3.86 | 3.11 | 2.56 | 2.36 |
90 | 3.87 | 3.20 | 2.59 | 2.41 |
120 | 3.91 | 3.16 | 2.61 | 2.51 |
Sample | Shell | N | R (Å) | σ2 (Å2) | E0 (eV) |
---|---|---|---|---|---|
EDA-IRP | Cu–O | 4.000 | 4.061 | 0.029 | 7.622 |
Cu–N | 6.000 | 2.014 | 0.008 | 3.501 | |
DETA-IRP | Cu–O | 4.000 | 4.085 | 0.004 | 7.100 |
Cu–N | 6.000 | 2.038 | 0.012 | 3.749 | |
TETA-IRP | Cu–O | 4.000 | 4.001 | 0.020 | 7.600 |
Cu–N | 6.000 | 2.014 | 0.010 | 2.652 | |
TEPA-IRP | Cu–O | 4.000 | 3.999 | 0.025 | 7.501 |
Cu–N | 6.000 | 2.038 | 0.014 | 4.709 | |
EDA-GMA-g-NWF | Cu–O | 4.000 | 4.205 | 0.004 | 4.045 |
Cu–N | 4.000 | 1.999 | 0.003 | 4.058 | |
DETA-GMA-g-NWF | Cu–O | 4.000 | 4.218 | 0.004 | 4.124 |
Cu–N | 4.000 | 1.993 | 0.003 | 3.882 | |
TETA-GMA-g-NWF | Cu–O | 4.000 | 4.253 | 0.004 | 4.253 |
Cu–N | 4.000 | 1.973 | 0.005 | 1.657 | |
TEPA-GMA-g-NWF | Cu–O | 4.000 | 4.240 | 0.007 | 4.240 |
Cu–N | 4.000 | 1.968 | 0.004 | 0.197 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Othman, N.A.F.; Selambakkannu, S.; Tuan Abdullah, T.A.; Hoshina, H.; Sattayaporn, S.; Seko, N. Selectivity of Copper by Amine-Based Ion Recognition Polymer Adsorbent with Different Aliphatic Amines. Polymers 2019, 11, 1994. https://doi.org/10.3390/polym11121994
Othman NAF, Selambakkannu S, Tuan Abdullah TA, Hoshina H, Sattayaporn S, Seko N. Selectivity of Copper by Amine-Based Ion Recognition Polymer Adsorbent with Different Aliphatic Amines. Polymers. 2019; 11(12):1994. https://doi.org/10.3390/polym11121994
Chicago/Turabian StyleOthman, Nor Azillah Fatimah, Sarala Selambakkannu, Tuan Amran Tuan Abdullah, Hiroyuki Hoshina, Suchinda Sattayaporn, and Noriaki Seko. 2019. "Selectivity of Copper by Amine-Based Ion Recognition Polymer Adsorbent with Different Aliphatic Amines" Polymers 11, no. 12: 1994. https://doi.org/10.3390/polym11121994
APA StyleOthman, N. A. F., Selambakkannu, S., Tuan Abdullah, T. A., Hoshina, H., Sattayaporn, S., & Seko, N. (2019). Selectivity of Copper by Amine-Based Ion Recognition Polymer Adsorbent with Different Aliphatic Amines. Polymers, 11(12), 1994. https://doi.org/10.3390/polym11121994