Star-Shaped Poly(2-ethyl-2-oxazoline) and Poly(2-isopropyl-2-oxazoline) with Central Thiacalix[4]Arene Fragments: Reduction and Stabilization of Silver Nanoparticles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
3. Results
3.1. Complexes of Star-PETOX and Star-PIPOX with Silver Nanoparticles in the Solid State
3.2. Hydrodynamic Characteristics of Star-PETOX and Star-PIPOX Complexes with Silver Nanoparticles in Solutions
3.3. SANS Study of Complexes of Star-Shaped Polymers with Silver Nanoparticles
3.4. Flow Birefringence (Maxwell Effect)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- De la Rosa, V.R. Poly(2-oxazoline)s as materials for biomedical applications. J. Mater. Sci. Mater. Med. 2014, 25, 1211–1225. [Google Scholar] [CrossRef] [PubMed]
- Lorson, T.; Lübtow, M.M.; Wegener, E.; Haider, M.S.; Borova, S.; Nahm, D.; Jordan, R.; Sokolski-Papkov, M.; Kabanov, A.V.; Luxenhofer, R. Poly(2-oxazoline)s based biomaterials: A comprehensive and critical update. Biomaterials 2018, 178, 204–280. [Google Scholar] [CrossRef] [PubMed]
- Glassner, M.; Vergaelen, M.; Hoogenboom, R. Poly(2-oxazoline)s: A comprehensive overview of polymer structures and their physical properties. Polym. Int. 2017, 67, 32–45. [Google Scholar] [CrossRef]
- Jerca, V.V.; Lava, K.; Verbraeken, B.; Hoogenboom, R. Poly(2-cycloalkyl-2-oxazoline)s: High melting temperature polymers solely based on Debye and Keesom van der Waals interactions. Polym. Chem. 2016, 7, 1309–1322. [Google Scholar] [CrossRef]
- Bauer, M.; Lautenschlaeger, C.; Kempe, K.; Tauhardt, L.; Schubert, U.S.; Fischer, D. Poly(2-ethyl-2-oxazoline) as alternative for the stealth polymer poly(ethylene glycol): Comparison of in vitro cytotoxicity and hemocompatibility. Macromol. Biosci. 2012, 12, 986–998. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Lai, S.K. Anti-PEG immunity: Emergence, characteristics, and unaddressed questions. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2015, 7, 655–677. [Google Scholar] [CrossRef] [Green Version]
- Dargaville, T.R.; Park, J.R.; Hoogenboom, R. Poly(2-oxazoline) Hydrogels: State-of-the-Art and Emerging Applications. Macromol. Biosci. 2018, 18, 1800070. [Google Scholar] [CrossRef]
- Zhang, N.; Luxenhofer, R.; Jordan, R. Thermoresponsive Poly(2-oxazoline) Molecular Brushes by Living Ionic Polymerization: Kinetic Investigations of Pendant Chain Grafting and Cloud Point Modulation by Backbone and Side Chain Length Variation. Macromol. Chem. Phys. 2012, 213, 973–981. [Google Scholar] [CrossRef]
- Kobayashi, S.; Uyama, H.; Narita, Y.; Ishiyama, J. Novel multifunctional initiators for polymerization of 2-oxazolines. Macromolecules 1992, 25, 3232–3236. [Google Scholar] [CrossRef]
- Valentin, V.J.; Florica, A.N.; Dan, S.V.; Dumitru, M.V. Synthesis of a new oxazoline macromonomer for dispersion polymerization. Polym. Bull. 2011, 66, 785–796. [Google Scholar]
- Schubert, U.S.; Heller, M. Metallo-Supramolecular Initiators for the Preparation of Novel Functional Architectures. Chem. Eur. J. 2001, 7, 5252–5259. [Google Scholar] [CrossRef]
- Hoogenboom, R.; Fijten, M.W.M.; Kickelbick, G.; Schubert, U.S. Synthesis and crystal structures of multifunctional tosylates as basis for star-shaped poly(2-ethyl-2-oxazoline)s. Beilstein J. Org. Chem. 2010, 6, 773–783. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tenkovtsev, A.V.; Amirova, A.I.; Filippov, A.P. Star-shaped Poly(2-alkyl-2-oxazolines): Synthesis and Properties. In Temperature-Responsive Polymers; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2018; pp. 67–92. ISBN 978-1-119-15783-0. [Google Scholar]
- Kurlykin, M.P.; Bursian, A.E.; Dudkina, M.M.; Ten’kovtsev, A.V. Synthesis of Star-Shaped Polymers Based on 2-ALKYL-2-Oxazoline with a Calix [8]Arene Central Core and the Study of Their Heat-Sensitive Properties. Fibre Chem. 2015, 47, 291–297. [Google Scholar] [CrossRef]
- Lezov, A.A.; Gubarev, A.S.; Podsevalnikova, A.N.; Senchukova, A.S.; Lebedeva, E.V.; Dudkina, M.M.; Tenkovtsev, A.V.; Nekrasova, T.N.; Andreeva, L.N.; Smyslov, R.Y.; et al. Temperature-responsive star-shaped poly(2-ethyl-2-oxazoline) and poly(2-isopropyl-2-oxazoline) with central thiacalix [4] arene fragments: Structure and properties in solutions. Colloid Polym. Sci. 2019, 297, 285–296. [Google Scholar] [CrossRef]
- Wilson, P.; Ke, P.C.; Davis, T.P.; Kempe, K. Poly(2-oxazoline)-based micro- and nanoparticles: A review. Eur. Polym. J. 2017, 88, 486–515. [Google Scholar] [CrossRef]
- Deshmukh, S.P.; Patil, S.M.; Mullani, S.B.; Delekar, S.D. Silver nanoparticles as an effective disinfectant: A review. Mater. Sci. Eng. C 2019, 97, 954–965. [Google Scholar] [CrossRef]
- Knetsch, M.L.W.; Koole, L.H. New Strategies in the Development of Antimicrobial Coatings: The Example of Increasing Usage of Silver and Silver Nanoparticles. Polymers 2011, 3, 340–366. [Google Scholar] [CrossRef]
- Evanoff, D.D.; Chumanov, G. Synthesis and Optical Properties of Silver Nanoparticles and Arrays. ChemPhysChem 2005, 6, 1221–1231. [Google Scholar] [CrossRef]
- Eustis, S.; Krylova, G.; Eremenko, A.; Smirnova, N.; Schill, A.W.; El-Sayed, M. Growth and fragmentation of silver nanoparticles in their synthesis with a fs laser and CW light by photo-sensitization with benzophenone. Photochem. Photobiol. Sci. 2005, 4, 154–159. [Google Scholar] [CrossRef] [PubMed]
- Pillai, Z.S.; Kamat, P.V. What Factors Control the Size and Shape of Silver Nanoparticles in the Citrate Ion Reduction Method? J. Phys. Chem. B 2004, 108, 945–951. [Google Scholar] [CrossRef]
- Mayer, A.B.R.; Johnson, R.W.; Hausner, S.H.; Mark, J.E. Colloidal Silver Nanoparticles Protected by Water-Solublenonionic Polymers and “Soft” Polyacids. J. Macromol. Sci. Part A 1999, 36, 1427–1441. [Google Scholar] [CrossRef]
- Huang, H.H.; Ni, X.P.; Loy, G.L.; Chew, C.H.; Tan, K.L.; Loh, F.C.; Deng, J.F.; Xu, G.Q. Photochemical Formation of Silver Nanoparticles in Poly(N-vinylpyrrolidone). Langmuir 1996, 12, 909–912. [Google Scholar] [CrossRef]
- Güner, P.T.; Mikó, A.; Schweinberger, F.F.; Demirel, A.L. Self-assembled poly(2-ethyl-2-oxazoline) fibers in aqueous solutions. Polym. Chem. 2012, 3, 322–324. [Google Scholar] [CrossRef] [Green Version]
- Tatar Güner, P.; Demirel, A.L. Effect of Anions on the Cloud Point Temperature of Aqueous Poly(2-ethyl-2-oxazoline) Solutions. J. Phys. Chem. B 2012, 116, 14510–14514. [Google Scholar] [CrossRef] [PubMed]
- Hoogenboom, R. Poly(2-oxazoline)s: A Polymer Class with Numerous Potential Applications. Angew. Chem. Int. Ed. 2009, 48, 7978–7994. [Google Scholar] [CrossRef] [PubMed]
- Schlaad, H.; Diehl, C.; Gress, A.; Meyer, M.; Demirel, A.L.; Nur, Y.; Bertin, A. Poly(2-oxazoline)s as Smart Bioinspired Polymers. Macromol. Rapid Commun. 2010, 31, 511–525. [Google Scholar] [CrossRef]
- Hendessi, S.; Tatar Güner, P.; Miko, A.; Demirel, A.L. Hydrogen bonded multilayers of poly(2-ethyl-2-oxazoline) stabilized silver nanoparticles and tannic acid. Eur. Polym. J. 2017, 88, 666–678. [Google Scholar] [CrossRef]
- Zhang, Z.; Maji, S.; da Fonseca Antunes, A.B.; De Rycke, R.; Hoogenboom, R.; De Geest, B.G. Salt-Driven Deposition of Thermoresponsive Polymer-Coated Metal Nanoparticles on Solid Substrates. Angew. Chem. Int. Ed. 2016, 55, 7086–7090. [Google Scholar] [CrossRef]
- Sudeep, P.K.; Kamat, P.V. Photosensitized Growth of Silver Nanoparticles under Visible Light Irradiation: A Mechanistic Investigation. Chem. Mater. 2005, 17, 5404–5410. [Google Scholar] [CrossRef]
- Yushkova, E.A.; Stoikov, I.I. p-tert-Butyl Thiacalix[4]arenes Functionalized with Amide and Hydrazide Groups at the Lower Rim in Cone, Partial Cone, and 1,3-Alternate Conformations Are “Smart” Building Blocks for Constructing Nanosized Structures with Metal Cations of s-, p-, and d-Elements in the Organic Phase. Langmuir 2009, 25, 4919–4928. [Google Scholar]
- Schuck, P. Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and Lamm equation modeling. Biophys. J. 2000, 78, 1606–1619. [Google Scholar] [CrossRef] [Green Version]
- Provencher, S.W. Inverse problems in polymer characterization: Direct analysis of polydispersity with photon correlation spectroscopy. Die Makromol. Chem. 1979, 180, 201–209. [Google Scholar] [CrossRef]
- Provencher, S.W. CONTIN: A general purpose constrained regularization program for inverting noisy linear algebraic and integral equations. Comput. Phys. Commun. 1982, 27, 229–242. [Google Scholar] [CrossRef]
- Pavlov, G.M.; Perevyazko, I.Y.; Okatova, O.V.; Schubert, U.S. Conformation parameters of linear macromolecules from velocity sedimentation and other hydrodynamic methods. Methods 2011, 54, 124–135. [Google Scholar] [CrossRef] [PubMed]
- Kratky, O.; Leopold, H.; Stabinger, H. The determination of the partial specific volume of proteins by the mechanical oscillator technique. Methods Enzymol. 1973, 27, 98–110. [Google Scholar]
- Pike, E.R. Photon Correlation and Light Beating Spectroscopy, 1st ed.; Cummins, H., Ed.; Springer: New York, NY, USA, 1974. [Google Scholar]
- Schärtl, W. Light Scattering from Polymer Solutions and Nanoparticle Dispersions, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Berne, B.J.; Pecora, R. Dynamic Light Scattering, with Application to Chemistry, Biology and Physics; John Wiley: Hoboken, NJ, USA, 1976. [Google Scholar]
- Tsvetkov, V.N. Rigid-Chain Polymers: Hydrodynamic and Optical Properties in Solution; Macromolecular Compounds; Consultants Bureau: London, UK, 1989; ISBN 978-0-306-11020-7. [Google Scholar]
- Kuklin, A.I.; Islamov, A.K.; Gordeliy, V.I. Scientific Reviews: Two-Detector System for Small-Angle Neutron Scattering Instrument. Neutron News 2005, 16, 16–18. [Google Scholar] [CrossRef]
- SAS. JINRLIB. Available online: http://wwwinfo.jinr.ru/programs/jinrlib/sas/indexe.html (accessed on 19 September 2018).
- Ostanevich, Y.M. Time-of-flight small-angle scattering spectrometers on pulsed neutron sources. In Makromolekulare Chemie. Macromolecular Symposia; Hüthig & Wepf Verlag: Basel, Switzerland, 1988; Volume 15, pp. 91–103. [Google Scholar]
- SasView. Available online: http://www.sasview.org/ (accessed on 18 July 2017).
- Seoudi, R.; Shabaka, A.; El Sayed, Z.A.; Anis, B. Effect of stabilizing agent on the morphology and optical properties of silver nanoparticles. Phys. E Low Dimens. Syst. Nanostruct. 2011, 44, 440–447. [Google Scholar] [CrossRef]
- Scott, D.; Harding, S.E.; Rowe, A. Analytical Ultracentrifugation; Royal Society of Chemistry: London, UK, 2005; ISBN 978-0-85404-547-1. [Google Scholar]
- Schuck, P.; Zhao, H.; Brautigam, C.A.; Ghirlando, R.; Zhao, H.; Brautigam, C.A.; Ghirlando, R. Basic Principles of Analytical Ultracentrifugation; CRC Press: Boka Radon, FL, USA, 2016; ISBN 978-0-429-09182-7. [Google Scholar]
- Millero, F.J.; Dexter, R.; Hoff, E. Density and viscosity of deuterium oxide solutions from 5–70 deg. J. Chem. Eng. Data 1971, 16, 85–87. [Google Scholar] [CrossRef]
- Xu, W.; Choi, I.; Plamper, F.A.; Synatschke, C.V.; Müller, A.H.E.; Melnichenko, Y.B.; Tsukruk, V.V. Thermo-Induced Limited Aggregation of Responsive Star Polyelectrolytes. Macromolecules 2014, 47, 2112–2121. [Google Scholar] [CrossRef]
- Rathgeber, S.; Monkenbusch, M.; Kreitschmann, M.; Urban, V.; Brulet, A. Dynamics of star-burst dendrimers in solution in relation to their structural properties. J. Chem. Phys. 2002, 117, 4047–4062. [Google Scholar] [CrossRef] [Green Version]
- Glatter, O. Modern Methods of Data Analysis in Small-Angle Scattering and Light Scattering. In Modern Aspects of Small-Angle Scattering; Nato ASI Series; Brumberger, H., Ed.; Springer: Dordrecht, The Netherlands, 1995; pp. 107–180. ISBN 978-94-015-8457-9. [Google Scholar]
- Beaucage, G. Approximations Leading to a Unified Exponential/Power-Law Approach to Small-Angle Scattering. J. Appl. Crystallogr. 1995, 28, 717–728. [Google Scholar] [CrossRef]
- Beaucage, G. Small-Angle Scattering from Polymeric Mass Fractals of Arbitrary Mass-Fractal Dimension. J. Appl. Crystallogr. 1996, 29, 134–146. [Google Scholar] [CrossRef] [Green Version]
- Burchard, W. Static and dynamic light scattering from branched polymers and biopolymers. In Light Scattering from Polymers; Springer: Berlin/Heidelberg, Germany, 1983; pp. 1–124. [Google Scholar]
- Schmidt, M.; Nerger, D.; Burchard, W. Quasi-elastic light scattering from branched polymers: 1. Polyvinylacetate and polyvinylacetate—Microgels prepared by emulsion polymerization. Polymer 1979, 20, 582–588. [Google Scholar] [CrossRef]
- Perevyazko, I.; Lebedeva, E.V.; Petrov, M.P.; Mikhailova, M.E.; Mikusheva, N.G.; Vezo, O.S.; Torlopov, M.A.; Martakov, I.S.; Krivoshapkin, P.V.; Tsvetkov, N.V.; et al. Analytical ultracentrifugation and other techniques in studying highly disperse nano-crystalline cellulose hybrids. Cellulose 2019, 26, 7159–7173. [Google Scholar] [CrossRef]
Sample | nAg/nS | Rh1 (nm) | Rh2 (nm) | Rh3 (nm) | Rsf1 (nm) | Rsf2 (nm) | Rsf3 (nm) | MsD1 × 10−3 (g/mol) | MsD2 × 10−6 (g/mol) | MsD3 × 10−9 (g/mol) |
---|---|---|---|---|---|---|---|---|---|---|
star-PETOX | 0 | - | 5.3 | 25 | 7.7 * | |||||
0.1 | - | 7.9 | 58 | ~1–2 | 10 | 50 | 8.1 | 1.3 | ||
1.1 | - | 6.3 | 42 | |||||||
11 | - | 3.6 | 19.7/110 | |||||||
star-PIPOX | 0 | 2.3 | 11 | - | 4.6 * | |||||
0.1 | 8.8 | 59 | ~1–2 | 45 | 1.2 | |||||
1.1 | 6.6 | 54 | ||||||||
11 | 5.4 | 16.3/68 |
Sample | nAg/nS | RhCUM (nm) | PDICUM |
---|---|---|---|
Star-PETOX/Ag0 | 0.1 | 49 | 0.65 |
1.1 | 45 | 1.30 | |
11 | 54 | 1.52 | |
Star-PIPOX/Ag0 | 0.1 | 49 | 0.70 |
1.1 | 35 | 1.20 | |
11 | 39 | 2.06 |
System | Rg1 (nm) | n1 | RC1 (nm) | Rg2 (nm) | n2 | RC2 (nm) | χ2red |
---|---|---|---|---|---|---|---|
star-PETOX | 7.99 ± 0.13 | 2.84 ± 0.03 | 10.4 | 3.76 ± 0.12 | 1.96 ± 0.08 | 5.34 | 0.8 |
star-PETOX/Ag⁰ | 9.86 ± 0.17 | 2.72 ± 0.10 | 13.0 | 3.53 ± 0.16 | 1.96 ± 0.14 | 5.02 | 0.5 |
star-PIPOX/Ag⁰ | 9.54 ± 0.33 | 2.74 ± 0.10 | 12.5 | 4.09 ± 0.29 | 1.99 ± 0.03 | 5.79 | 0.4 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lezov, A.; Gubarev, A.; Mikhailova, M.; Lezova, A.; Mikusheva, N.; Kalganov, V.; Dudkina, M.; Ten’kovtsev, A.; Nekrasova, T.; Andreeva, L.; et al. Star-Shaped Poly(2-ethyl-2-oxazoline) and Poly(2-isopropyl-2-oxazoline) with Central Thiacalix[4]Arene Fragments: Reduction and Stabilization of Silver Nanoparticles. Polymers 2019, 11, 2006. https://doi.org/10.3390/polym11122006
Lezov A, Gubarev A, Mikhailova M, Lezova A, Mikusheva N, Kalganov V, Dudkina M, Ten’kovtsev A, Nekrasova T, Andreeva L, et al. Star-Shaped Poly(2-ethyl-2-oxazoline) and Poly(2-isopropyl-2-oxazoline) with Central Thiacalix[4]Arene Fragments: Reduction and Stabilization of Silver Nanoparticles. Polymers. 2019; 11(12):2006. https://doi.org/10.3390/polym11122006
Chicago/Turabian StyleLezov, Alexey, Alexander Gubarev, Maria Mikhailova, Alexandra Lezova, Nina Mikusheva, Vladimir Kalganov, Marina Dudkina, Andrey Ten’kovtsev, Tatyana Nekrasova, Larisa Andreeva, and et al. 2019. "Star-Shaped Poly(2-ethyl-2-oxazoline) and Poly(2-isopropyl-2-oxazoline) with Central Thiacalix[4]Arene Fragments: Reduction and Stabilization of Silver Nanoparticles" Polymers 11, no. 12: 2006. https://doi.org/10.3390/polym11122006
APA StyleLezov, A., Gubarev, A., Mikhailova, M., Lezova, A., Mikusheva, N., Kalganov, V., Dudkina, M., Ten’kovtsev, A., Nekrasova, T., Andreeva, L., Saprykina, N., Smyslov, R., Gorshkova, Y., Romanov, D., Höppener, S., Perevyazko, I., & Tsvetkov, N. (2019). Star-Shaped Poly(2-ethyl-2-oxazoline) and Poly(2-isopropyl-2-oxazoline) with Central Thiacalix[4]Arene Fragments: Reduction and Stabilization of Silver Nanoparticles. Polymers, 11(12), 2006. https://doi.org/10.3390/polym11122006