Production and Characterization of Glutathione-Chitosan Conjugate Films as Systems for Localized Release of Methotrexate
Abstract
:1. Introduction
2. Experimental Part
2.1. Materials
2.2. Production of Polymer Films
2.3. Characterization of Polymer Dispersions
2.4. Surface Characterization of Polymer Films
2.4.1. Contact Angle
2.4.2. Water Spreading Rate
2.4.3. Thermodynamic Work of Adhesion (Wadh)
2.5. In Vitro Release of Methotrexate
2.6. Statistical Analysis
3. Results and Discussion
3.1. Characterization of Polymer Dispersions
3.2. Surface Characterization of Glutathione-Chitosan Conjugates
3.2.1. Contact Angle and Work of Adhesion Measurements
3.2.2. Water Spreading Rate
3.3. Evaluation of the In Vitro Release of Methotrexate
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Senapati, S.; Mahanta, A.K.; Kumar, S.; Maiti, P. Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct. Target. Ther. 2018, 3, 1–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jolivet, J.; Cowan, K.H.; Curt, G.A.; Clendeninn, N.J.; Chabner, B.A. The Pharmacology and Clinical Use of Methotrexate. N. Engl. J. Med. 1983, 309, 1094–1104. [Google Scholar] [CrossRef] [PubMed]
- Galluzzi, L.; Vacchelli, E.; Bravo-San Pedro, J.M.; Buqué, A.; Senovilla, L.; Baracco, E.E.; Bloy, N.; Castoldi, F.; Abastado, J.P.; Agostinis, P.; et al. Classification of current anticancer immunotherapies. Oncotarget 2014, 5, 12472–12508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chandak, A.R.; Verma, P. Design and development of hydroxypropyl methylcellulose (HPMC) based polymeric films of methotrexate: Physicochemical and pharmacokinetic evaluations. Pharm. Soc. Jpn. 2008, 128, 1057–1066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sonvico, F.; Barbieri, S.; Colombo, P.; Mucchino, C.; Barocelli, E.; Cantoni, A.M.; Cavazzoni, A.; Petronini, P.G.; Rusca, M.; Carbognani, P.; et al. Physicochemical and pharmacokinetic properties of polymeric films loaded with cisplatin for the treatment of malignant pleural mesothelioma. J. Thorac. Dis. 2018, 10, S194–S206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmed, T.A.; Aljaeid, B.M. Preparation, characterization, and potential application of chitosan, chitosan derivatives, and chitosan metal nanoparticles in pharmaceutical drug delivery. Drug Des. Devel. Ther. 2016, 10, 483–507. [Google Scholar] [CrossRef] [Green Version]
- Moses, M.A.; Brem, H.; Langer, R. Advancing the field of drug delivery. Cancer Cell 2003, 4, 337–341. [Google Scholar] [CrossRef] [Green Version]
- Wolinsky, J.B.; Colson, Y.L.; Grinstaff, M.W. Local drug delivery strategies for cancer treatment: Gels, nanoparticles, polymeric films, rods, and wafers. J. Control. Release 2012, 59, 14–26. [Google Scholar] [CrossRef] [Green Version]
- Sgorla, D.; Almeida, A.; Azevedo, C.; Bunhak, E.J.; Sarmento, B.; Cavalcanti, O.A. Development and characterization of crosslinked hyaluronic acid polymeric films for use in coating processes. Int. J. Pharm. 2016, 511, 380–389. [Google Scholar] [CrossRef]
- Marchetti, J.M.; de Souza, M.C.; Marotta-Oliveira, S.S. Nanocarriers and cancer therapy: Approaches to topical and transdermal delivery. In Nanocosmetics and nanomedicines; Springer: Berlin/Heidelberg, Germany, 2011; pp. 29–286. [Google Scholar]
- Wimardhani, Y.S.; Suniarti, D.F.; Freisleben, H.J.; Wanandi, S.I.; Siregar, N.C.; Ikeda, M.A. Chitosan exerts anticancer activity through induction of apoptosis and cell cycle arrest in oral cancer cells. J. Oral Sci. 2014, 56, 119–126. [Google Scholar] [CrossRef] [Green Version]
- Patil, O.; Schulz, D.N. Functional Polymers: An overview. In ACS Symposium Series; American Chemical Society: Washington, DC, USA, 1998; pp. 1–14. [Google Scholar]
- Rojas, J.; Ciro, Y.; Salamanca, C. Thiolated Chitosan: A Promising Strategy for Improving the Effectiveness of Anticancer Drugs. In Analytical and Pharmaceutical Chemistry; SMGroup: Dover, DE, USA, 2017; pp. 1–17. [Google Scholar]
- Ciro, Y.; Rojas, J.; Yarce, C.J.; Salamanca, C.H. Preparation, characterization and rheological behavior of glutathione-chitosan conjugates in aqueous media. Appl. Rheol. 2019, 29, 1–12. [Google Scholar] [CrossRef]
- Rojas, Y.; Ciro, Y.; Constain, S. Effect of the degree of acetylation on the physical and tableting properties of chitin. In Chitin: Properties, Applications and Research; Nova Sciences Publishers Inc.: Hauppauge, NY, USA, 2017; pp. 21–42. [Google Scholar]
- Zhang, D.; Flory, J.H.; Panmai, S.; Batra, U.; Kaufman, M.J. Wettability of pharmaceutical solids: Its measurement and influence on wet granulation. Colloids Surf. A Physicochem. Eng. Asp. 2002, 206, 547–554. [Google Scholar] [CrossRef]
- Hejazi, I.; Sadeghi, G.M.M.; Jafari, S.H.; Khonakdar, H.A.; Seyfi, J.; Holzschuh, M.; Simon, F. Transforming an intrinsically hydrophilic polymer to a robust self-cleaning superhydrophobic coating via carbon nanotube surface embedding. Mater. Des. 2015, 86, 338–346. [Google Scholar] [CrossRef]
- De Gennes, P.G. Wetting: Statics and dynamics. Rev. Mod. Phys. 1985, 57, 827–863. [Google Scholar] [CrossRef]
- Chau, T.T.; Bruckard, W.J.; Koh, P.T.L.; Nguyen, A.V. A review of factors that affect contact angle and implications for flotation practice. Adv. Colloid Interface Sci. 2009, 150, 106–115. [Google Scholar] [CrossRef]
- Li, S.; Zhai, S.; Liu, Y.; Zhou, H.; Wu, J.; Jiao, Q.; Zhang, B.; Zhu, H.; Yan, B. Experimental modulation and computational model of nano-hydrophobicity. Biomaterials 2015, 52, 312–317. [Google Scholar] [CrossRef] [Green Version]
- Kwok, D.Y.; Neumann, A.W. Contact angle measurement and contact angle interpretation. Adv. Colloid Interface Sci. 1998, 81, 167249. [Google Scholar] [CrossRef]
- Anderson, N.H.; Bauer, M.; Boussac, N.; Khan-Malek, R.; Munden, P.; Sardaro, M. An evaluation of fit factors and dissolution efficiency for the comparison of in vitro dissolution profiles. J. Pharm. Biomed. Anal. 1998, 17, 811–822. [Google Scholar] [CrossRef]
- Podczeck, F. Comparison of in vitro dissolution profiles by calculating mean dissolution time (MDT) or mean residence time (MRT). Int. J. Pharm. 1993, 97, 93–100. [Google Scholar] [CrossRef]
- Diaz, D.A.; Colgan, S.T.; Langer, C.S.; Bandi, N.T.; Likar, M.D.; Alstine, L.V. Dissolution similarity requirements: How similar or dissimilar are the global regulatory expectations? AAPS J. 2016, 18, 15–22. [Google Scholar] [CrossRef]
- Siepmann, J.; Siepmann, F. Mathematical modeling of drug dissolution. Int J Pharm 2013, 453, 12–24. [Google Scholar] [CrossRef] [PubMed]
- Marcos, B. Mathematical models of drug release. In Strategies to Modify the Drug Release from Pharmaceutical Systems; Bruschi, M.L., Ed.; Woodhead Publishing: Cambridge, UK, 2015; pp. 63–86. [Google Scholar]
- Higuchi, W.I. Diffusional models useful in biopharmaceutics drug releaserate processes. J. Pharm. Sci. 1967, 56, 315–324. [Google Scholar] [CrossRef]
- Ritger, P.L.; Peppas, N.A. A simple equation for description of solute release II. Fickian and anomalous release from swellable devices. J. Control. Release 1987, 5, 37–42. [Google Scholar] [CrossRef]
- Ritger, P.L.; Peppas, N.A. A simple Fickian equation for description of solute release. I. Fickian and non-Fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs. J. Control. Release 1987, 5, 23–26. [Google Scholar] [CrossRef]
- Peppas, N.A.; Sahlin, J.J. A simple equation for the description of solute release. III. Coupling of diffusion and relaxation. Int. J. Pharm. 1989, 57, 169–172. [Google Scholar] [CrossRef]
- Bhattacharjee, S. DLS and zeta potential—What they are and what they are not? J. Control. Release 2016, 235, 337–351. [Google Scholar] [CrossRef]
- Ramya, R.; Sudha, P.N.; Mahalakshmi, J. Preparation and characterization of chitosan binary blend. Int. J. Sci. Res. Publ. 2012, 2, 1–9. [Google Scholar]
- Kafedjiiski, K.; Föger, F.; Werle, M.; Berknkop-Schnürch, A. Synthesis and in vitro evaluation of a novel chitosan-glutathione conjugate. Pharm. Res. 2005, 22, 1480–1488. [Google Scholar] [CrossRef]
- Jang, J.H.; Jeong, S.H.; Lee, Y.B. Preparation and in vitro/in vivo characterization of polymeric nanoparticles containing methotrexate to improve lymphatic delivery. Int. J. Mol. Sci. 2019, 20, 3312. [Google Scholar] [CrossRef] [Green Version]
- Costa, P.; Sousa, L. Modeling and comparison of dissolution profiles. Eur. J. Pharm. Sci. 2001, 13, 123–133. [Google Scholar] [CrossRef]
- Rojas, J.; Ciro, Y. Evaluation of the swelling and diffusional behavior of guar gum for the controlled release of bioactive agents. In Advances in Medicine and Biology; Nova Science Publishers Inc.: Hauppauge, NY, USA, 2016; pp. 115–130. [Google Scholar]
- Hancock, B.C.; Zografi, G. The relationship between the glass transition temperature and the water content of amorphous pharmaceutical solids. Pharm. Res. 1994, 11, 471–477. [Google Scholar] [CrossRef]
- Sreenivs, S.A.; Pai, K.V. Thiolated chitosans: Novel polymers for mucoadhesive drug delivery—A review. Trop. J. Pharm. Res. 2008, 7, 1077–1088. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Huang, Y.; Kumar, A.; Tan, A.; Jin, S.; Mozhi, A.; Liang, X.J. pH-Sensitive nano-systems for drug delivery in cancer therapy. Biotechnol. Adv. 2014, 32, 693–710. [Google Scholar] [CrossRef]
- Du, J.; Lane, L.A.; Nie, S. Stimuli-responsive nanoparticles for targeting the tumor microenvironment. J. Control. Release 2015, 219, 205–214. [Google Scholar] [CrossRef] [Green Version]
Polymer Material | Size (nm) | Polydispersity Index | Zeta Potential (mV) |
---|---|---|---|
CH-SH-4.4% | 1102.5 ± 20.1 | 0.70 ± 0.08 | +23.0 ± 1.2 |
CH-SH-5.1% | 3424.7 ± 38.4 | 0.91 ± 0.08 | +15.1 ± 0.7 |
CH-SH-7.0% | 551.2 ± 17.3 | 0.76 ± 0.07 | +21.1 ± 1.7 |
Polymer | AUC | MRT | ||
---|---|---|---|---|
pH = 4.5 | pH = 7.4 | pH = 4.5 | pH = 7.4 | |
MTX free | 464.0 | 80.0 | 1.03 | 0.17 |
CH-SH-4.4% | 198.8 | 73.7 | 1.33 | 0.16 |
CH-SH-5.1% | 170.1 | 65.2 | 1.34 | 0.17 |
CH-SH-7.0% | 94.2 | 55.7 | 1.34 | 0.18 |
Release Profiles | f2 Factor | |
---|---|---|
pH = 4.5 | pH = 7.4 | |
CH-SH-4.4%-CH-SH-5.1% | 60.0 | 43.8 |
CH-SH-5.1%- CH-SH-7.0% | 34.5 | 43.8 |
CH-SH-4.4%-CH-SH-7.0% | 29.3 | 29.1 |
Polymer | pH | Order 1 | Higuchi | Korsmeyer–Peppas with t-lag | Peppas–Sahlin | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
k1 | r2 | kH | r2 | k | n | t-lag | r2 | kd | kr | r2 | ||
MTX free | 4.5 | 0.500 | 0.6835 | 29.226 | 0.6830 | - | - | - | - | - | - | - |
7.4 | 4.497 | 0.9546 | 105.1 | 0.9353 | - | - | - | - | - | - | - | |
CH-SH-4.4% | 4.5 | 0.050 | 0.9070 | 13.088 | 0.8937 | 0.342 | 0.23 | 0.10 | 0.9800 | 0.19 | 1.5 × 10−8 | 0.8936 |
7.4 | 4.822 | 0.9683 | 121.8 | 0.8576 | 1.24 | 0.64 | 0.08 | 0.9654 | 1.05 | 0.86 | 0.8327 | |
CH-SH-5.1% | 4.5 | 0.044 | 0.9220 | 12.876 | 0.9322 | 0.286 | 0.27 | 0.10 | 0.9819 | 0.17 | 1.5 × 10−8 | 0.9321 |
7.4 | 5.178 | 0.9470 | 125.1 | 0.8950 | 1.24 | 0.64 | 0.08 | 0.9305 | 0.496 | 0.644 | 0.8822 | |
CH-SH-7.0% | 4.5 | 0.036 | 0.9385 | 12.888 | 0.9807 | 0.23 | 0.24 | 0.0002 | 0.9731 | 0.07 | 0.015 | 0.9356 |
7.4 | 5.094 | 0.8667 | 123.6 | 0.8622 | 1.25 | 0.88 | 0.08 | 0.8892 | 0.16 | 0.910 | 0.9115 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ciro, Y.; Rojas, J.; Yarce, C.J.; Salamanca, C.H. Production and Characterization of Glutathione-Chitosan Conjugate Films as Systems for Localized Release of Methotrexate. Polymers 2019, 11, 2032. https://doi.org/10.3390/polym11122032
Ciro Y, Rojas J, Yarce CJ, Salamanca CH. Production and Characterization of Glutathione-Chitosan Conjugate Films as Systems for Localized Release of Methotrexate. Polymers. 2019; 11(12):2032. https://doi.org/10.3390/polym11122032
Chicago/Turabian StyleCiro, Yhors, John Rojas, Cristian J. Yarce, and Constain H. Salamanca. 2019. "Production and Characterization of Glutathione-Chitosan Conjugate Films as Systems for Localized Release of Methotrexate" Polymers 11, no. 12: 2032. https://doi.org/10.3390/polym11122032
APA StyleCiro, Y., Rojas, J., Yarce, C. J., & Salamanca, C. H. (2019). Production and Characterization of Glutathione-Chitosan Conjugate Films as Systems for Localized Release of Methotrexate. Polymers, 11(12), 2032. https://doi.org/10.3390/polym11122032