Effects of Freeze–Thaw Thermal Cycles on the Mechanical Degradation of the Gas Diffusion Layer in Polymer Electrolyte Membrane Fuel Cells
Abstract
:1. Introduction
2. Experimental Details
2.1. Experimental Procedures
2.2. Freeze–Thaw Thermal Cycle
2.3. Mechanical Tests
3. Results and Discussion
3.1. GDL’s Compressive Degradation Performance
3.2. GDL’s In-Plane Tensile Degradation Performance
3.3. GDL’s Shear Degradation Performance
4. Conclusions
- For the compressive performance, the initial phase of the repeated thermal treatment has more effects, due to the breakage of carbon fibers in the substrate caused by the assembly force and frost-heaving force. In the case of compressive loads beyond 60 N (or 3 MPa), the effects of further thermal cycles diminish and the GDL’s compressive behavior could remain stable.
- For the in-plane tensile performance, the GDL shows anisotropic properties. The repeated freeze–thaw thermal aging treatment greatly affects the GDL’s in-plane tensile behavior. All three kinds of thermal failure, that play different roles in different thermal stages, contribute to the GDL’s anisotropic tensile degradation.
- For the shear performance, although there are slight fluctuations in the shear stiffness, it could be roughly assumed that the freeze–thaw thermal cycles affect the GDL’s shear performance negligibly, according to the experimental data. As for the rebounded point, this might be due to densification of the carbon fiber network.
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Lapicque, F.; Belhadj, M.; Bonnet, C.; Pauchet, J.; Thomas, Y. A critical review on gas diffusion micro and macroporous layers degradations for improved membrane fuel cell durability. J. Power Sour. 2016, 336, 40–53. [Google Scholar] [CrossRef]
- Jayakumar, A.; Singamneni, S.; Ramos, M.; Al-Jumaily, A.M.; Pethaiah, S.S. Manufacturing the gas diffusion layer for pem fuel cell using a novel 3d printing technique and critical assessment of the challenges encountered. Materials 2017, 10, 796. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Oh, H.; Ha, T.; Lee, Y.I.; Min, K. A review of the gas diffusion layer in proton exchange membrane fuel cells: Durability and degradation. Appl. Energy 2015, 155, 866–880. [Google Scholar] [CrossRef]
- Taherian, R.; Ghorbani, M.M.; Kiahosseini, S.R. A new method for optimal fabrication of carbon composite paper as gas diffusion layer used in proton exchange membrane of fuel cells. J. Electroanal. Chem. 2018, 815, 90–97. [Google Scholar] [CrossRef]
- Meyer, Q.; Ashton, S.; Boillat, P.; Cochet, M.; Engebretsen, E.; Finegan, D.P.; Lu, X.; Bailey, J.J.; Mansor, N.; Abdulaziz, R. Effect of gas diffusion layer properties on water distribution across air-cooled, open-cathode polymer electrolyte fuel cells: A combined ex-situ x-ray tomography and in-operando neutron imaging study. Electrochim. Acta 2016, 211, 478–487. [Google Scholar] [CrossRef]
- Lvov, S.N.; Fedkin, M.V.; Chalkova, E.; Pague, M.B. Composite membrane-based pemfcs for operating at elevated temperature and reduced relative humidity. Prepr. Pap. Am. Chem. Soc. Div. Fuel Chem. 2004, 49, 606. [Google Scholar]
- Ruksawong, K.; Songprakorp, R.; Monyakul, V.; David, N.; Sui, P.-C.; Djilali, N. Investigation of pemfc under static magnetic field: Temperature, relative humidity and performance. J. Electrochem. Soc. 2017, 164, F1–F8. [Google Scholar] [CrossRef]
- Thompson, E.L. Behavior of Proton Exchange Membrane Fuel Cells at Subfreezing Temperatures. Ph.D. Thesis, Department of Chemical Engineering, University of Rochester, Rochester, NY, USA, 2007. [Google Scholar]
- Han, K.; Hong, B.K.; Kim, S.H.; Ahn, B.K.; Lim, T.W. Influence of anisotropic bending stiffness of gas diffusion layers on the degradation behavior of polymer electrolyte membrane fuel cells under freezing conditions. Int. J. Hydrogen Energ. 2011, 36, 12452–12464. [Google Scholar] [CrossRef]
- Lee, Y.; Kim, B.; Kim, Y.; Li, X. Degradation of gas diffusion layers through repetitive freezing. Appl. Energy 2011, 88, 5111–5119. [Google Scholar] [CrossRef]
- Yan, Q.; Toghiani, H.; Lee, Y.-W.; Liang, K.; Causey, H. Effect of sub-freezing temperatures on a pem fuel cell performance, startup and fuel cell components. J. Power Source 2006, 160, 1242–1250. [Google Scholar] [CrossRef]
- Kim, S.-G.; Lee, S.-J. Tomographic analysis of porosity variation in gas diffusion layer under freeze-thaw cycles. Int. J. Hydrogen Energy 2012, 37, 566–574. [Google Scholar] [CrossRef]
- Kim, S.; Ahn, B.K.; Mench, M. Physical degradation of membrane electrode assemblies undergoing freeze/thaw cycling: Diffusion media effects. J. Power Source 2008, 179, 140–146. [Google Scholar] [CrossRef]
- Dotelli, G.; Omati, L.; Stampino, P.G.; Grassini, P.; Brivio, D. Investigation of gas diffusion layer compression by electrochemical impedance spectroscopy on running polymer electrolyte membrane fuel cells. J Power Source 2011, 196, 8955–8966. [Google Scholar] [CrossRef]
- Vinod Selvaganesh, S.; Selvarani, G.; Sridhar, P.; Pitchumani, S.; Shukla, A. Graphitic carbon as durable cathode-catalyst support for pefcs. Fuel Cells 2011, 11, 372–384. [Google Scholar] [CrossRef]
- Latorrata, S.; Stampino, P.G.; Cristiani, C.; Dotelli, G. Development of an optimal gas diffusion medium for polymer electrolyte membrane fuel cells and assessment of its degradation mechanisms. Int. J. Hydrogen Energy. 2015, 40, 14596–14608. [Google Scholar] [CrossRef]
- García-Salaberri, P.A.; Vera, M.; Zaera, R. Nonlinear orthotropic model of the inhomogeneous assembly compression of pem fuel cell gas diffusion layers. Int. J. Hydrogen Energy 2011, 36, 11856–11870. [Google Scholar] [CrossRef]
- Chen, Y.; Jiang, C.; Cho, C. An investigation of the compressive behavior of polymer electrode membrane fuel cell’s gas diffusion layers under different temperatures. Polymers 2018, 10, 971. [Google Scholar] [CrossRef]
- Herrera-Franco, P.; Valadez-Gonzalez, A. Mechanical properties of continuous natural fibre-reinforced polymer composites. Compos. Part A Appl. Sci. Manuf. 2004, 35, 339–345. [Google Scholar] [CrossRef]
- Stamm, M. Polymer Surfaces and Interfaces: Characterization, Modification and Applications; Springer: Berlin/Heidelberg, Germany, 2008; Volume 1, pp. 40–48. ISBN 978-3-540-73864-0. [Google Scholar]
- Lai, Y.-H.; Rapaport, P.A.; Ji, C.; Kumar, V. Channel intrusion of gas diffusion media and the effect on fuel cell performance. J. Power Source 2008, 184, 120–128. [Google Scholar] [CrossRef]
- Zhou, Y.; Jiao, K.; Du, Q.; Yin, Y.; Li, X. Gas diffusion layer deformation and its effect on the transport characteristics and performance of proton exchange membrane fuel cell. Int. J. Hydrogen Energy 2013, 38, 12891–12903. [Google Scholar] [CrossRef]
- Ferreira, R.B.; Falcão, D.; Oliveira, V.; Pinto, A. Experimental study on the membrane electrode assembly of a proton exchange membrane fuel cell: Effects of microporous layer, membrane thickness and gas diffusion layer hydrophobic treatment. Electrochim. Acta 2017, 224, 337–345. [Google Scholar] [CrossRef]
- Movahedi, M.; Ramiar, A.; Ranjber, A. 3d numerical investigation of clamping pressure effect on the performance of proton exchange membrane fuel cell with interdigitated flow field. Energy 2018, 142, 617–632. [Google Scholar] [CrossRef]
- He, S.; Mench, M.M. One-dimensional transient model for frost heave in polymer electrolyte fuel cells i. Physical model. J. Electrochem. Soc 2006, 153, A1724–A1731. [Google Scholar] [CrossRef]
- He, S.; Kim, S.H.; Mench, M.M. 1d transient model for frost heave in polymer electrolyte fuel cells ii. Parametric study. J. Electrochem. Soc. 2007, 154, B1024–B1033. [Google Scholar] [CrossRef]
- Palecki, S.; Gorelkov, S.; Wartmann, J.; Heinzel, A. Frost induced damages within porous materials-from concrete technology to fuel cells technique. J. Power Sour. 2017, 372, 204–211. [Google Scholar] [CrossRef]
- Carral, C.; Mélé, P. A constitutive law to predict the compression of gas diffusion layers. Int. J. Hydrogen Energy 2018, 43, 19721–19729. [Google Scholar] [CrossRef]
- Poornesh, K.; Sohn, Y.-J.; Park, G.-G.; Yang, T.-H. Gas-diffusion layer’s structural anisotropy induced localized instability of nafion membrane in polymer electrolyte fuel cell. Int. J. Hydrogen Energy 2012, 37, 15339–15349. [Google Scholar] [CrossRef]
- Guan, T.; Yang, Z.; Sun, Y.; Guo, W. Anisotropic mechanical behavior of gadolinia-doped ceria solid electrolytes under tensile loading. Ceram. Int. 2019, 45, 1293–1301. [Google Scholar] [CrossRef]
- Zhan, Z.; Zhao, H.; Sui, P.; Jiang, P.; Pan, M.; Djilali, N. Numerical analysis of ice-induced stresses in the membrane electrode assembly of a pem fuel cell under sub-freezing operating conditions. Int. J. Hydrogen Energy 2018, 43, 4563–4582. [Google Scholar] [CrossRef]
- Xia, Q.-C.; Liu, M.-L.; Cao, X.-L.; Wang, Y.; Xing, W.; Sun, S.-P. Structure design and applications of dual-layer polymeric membranes. J. Membr. Sci. 2018, 562, 85–111. [Google Scholar] [CrossRef]
- Zhang, Z.; Klein, P.; Friedrich, K. Dynamic mechanical properties of ptfe based short carbon fibre reinforced composites: Experiment and artificial neural network prediction. Compos. Sci. Technol. 2002, 62, 1001–1009. [Google Scholar] [CrossRef]
- Beaumont, P.W.R.; Soutis, C.; Hodzic, A. The Structural Integrity of Carbon Fiber Composites: Fifty Years of Progress and Achievement of the Science, Development, and Applications; Springer International Publishing: Basel, Switzerland, 2017; pp. 426–430. [Google Scholar]
- Fei, J.; Wang, W.; Ren, A.; Ji, Y.; Zhou, J.; Zhu, M. Mechanical properties and densification of short carbon fiber-reinforced tib2/c composites produced by hot pressing. J. Alloys Compd. 2014, 584, 87–92. [Google Scholar] [CrossRef]
- Han, B.; Guo, E.; Xue, X.; Zhao, Z.; Luo, L.; Qu, H.; Niu, T.; Xu, Y.; Hou, H. Fabrication and densification of high performance carbon nanotube/copper composite fibers. Carbon 2017, 123, 593–604. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Jiang, C.; Cho, C. Effects of Freeze–Thaw Thermal Cycles on the Mechanical Degradation of the Gas Diffusion Layer in Polymer Electrolyte Membrane Fuel Cells. Polymers 2019, 11, 428. https://doi.org/10.3390/polym11030428
Chen Y, Jiang C, Cho C. Effects of Freeze–Thaw Thermal Cycles on the Mechanical Degradation of the Gas Diffusion Layer in Polymer Electrolyte Membrane Fuel Cells. Polymers. 2019; 11(3):428. https://doi.org/10.3390/polym11030428
Chicago/Turabian StyleChen, Yanqin, Chao Jiang, and Chongdu Cho. 2019. "Effects of Freeze–Thaw Thermal Cycles on the Mechanical Degradation of the Gas Diffusion Layer in Polymer Electrolyte Membrane Fuel Cells" Polymers 11, no. 3: 428. https://doi.org/10.3390/polym11030428
APA StyleChen, Y., Jiang, C., & Cho, C. (2019). Effects of Freeze–Thaw Thermal Cycles on the Mechanical Degradation of the Gas Diffusion Layer in Polymer Electrolyte Membrane Fuel Cells. Polymers, 11(3), 428. https://doi.org/10.3390/polym11030428