Fabrication of Graphene-Metal Transparent Conductive Nanocomposite Layers for Photoluminescence Enhancement
Abstract
:1. Introduction
2. Experimental Section
2.1. The Growth of Graphene Sheet Layer
2.2. Transfer Graphene Layer to Target Substrate
2.3. Preparation of GA (Graphene/Ag) Hybrid Sample
2.4. Transfer Second Layer Graphene to GA
2.5. Theoretical Model
2.6. Simulation Method
2.7. Characterization
3. Results and Discussion
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Lee, J.; Govorov, A.O.; Dulka, J.; Kotov, N.A. Bioconjugates of CdTe Nanowires and Au Nanoparticles: Plasmon-Exciton Interactions, Luminescence Enhancement, and Collective Effects. Nano Lett. 2004, 4, 2323–2330. [Google Scholar] [CrossRef]
- Rojas-Hernandez, R.E.; Rubio-Marcos, F.; Serrano, A.; Del, C.A.; Fernandez, J.F. Precise Tuning of the Nanostructured Surface leading to the Luminescence Enhancement in SrAl2O4 Based Core/Shell Structure. Sci. Rep. 2017, 7, 462. [Google Scholar] [CrossRef] [PubMed]
- Fukuura, T. Plasmons excited in a large dense silver nanoparticle layer enhance the luminescence intensity of organic light emitting diodes. Appl. Surf. Sci. 2015, 346, 451–457. [Google Scholar] [CrossRef]
- Phillips, M.R. Stability of InGaN/GaN MQW Luminescence Under Prolonged High Current Injection. Microsc. Microanal. 2012, 18, 1876–1877. [Google Scholar] [CrossRef]
- Yoo, J.; Ma, X.; Tang, W.; Yi, G.C. Metal-Lined Semiconductor Nanotubes for Surface Plasmon-Mediated Luminescence Enhancement. Nano Lett. 2013, 5, 2134–2140. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.R.; Liao, K.C.; Wu, C.H.; Lin, S.Y. Luminescence Enhancement and Enlarged Dirac Point Shift of MoS2/Graphene Hetero-Structure Photodetectors with Post growth Annealing Treatment. IEEE J. Sel. Top. Quantum Electron. 2016, 23, 101–105. [Google Scholar] [CrossRef]
- Ellmer, K. Past achievements and future challenges in the development of optically transparent electrodes. Nat. Photonics 2012, 6, 809. [Google Scholar] [CrossRef]
- Wang, Y.B.; Wei, X.H.; Chang, L.; Xu, D.G.; Dai, B.; Pierson, J.F.; Wang, Y. Room temperature fabrication of transparent p-NiO/n-ZnO junctions with tunable electrical properties. Vacuum 2018, 149, 331–335. [Google Scholar] [CrossRef]
- Ievtushenko, A.I.; Karpyna, V.; Eriksson, J.; Tsiaoussis, I.; Shtepliuk, I.; Lashkarev, G.; Yakimova, R.; Khranovskyy, V. Effect of Ag doping on the structural, electrical and optical properties of ZnO grown by MOCVD at different substrate temperatures. Superlattices Microstruct. 2018, 117, 121–131. [Google Scholar] [CrossRef]
- Myroniuk, D.V.; Ievtushenko, A.I.; Lashkarev, G.V.; Maslyuk, V.T.; Timofeeva, I.I.; Baturin, V.A.; Karpenko, O.Y.; Kuznetsov, V.M.; Dranchuk, M.V. Effect of electron irradiation on transparent conductive films ZnO: Al deposited at different sputtering power. Semicond. Phys. Quantum Electron. Optoelectron. 2015, 18, 286–291. [Google Scholar] [CrossRef]
- Jeong, H.; Jeong, M.S. Confocal electroluminescence investigations of highly efficient green InGaN LED via ZnOnanorods. J. Alloys Compd. 2016, 660, 480–485. [Google Scholar] [CrossRef]
- Han, T.H.; Jeong, S.H.; Lee, Y.; Seo, H.K.; Kwon, S.J.; Park, M.H.; Lee, T.W. Flexible transparent electrodes for organic light-emitting diodes. J. Inf. Disp. 2015, 16, 71–84. [Google Scholar] [CrossRef]
- Liu, Y.F.; Feng, J.; Zhang, Y.F.; Cui, H.F.; Yin, D.; Bi, Y.G.; Song, J.F.; Chen, Q.D.; Sun, H.B. Improved efficiency of indium-tin-oxide-free organic light-emitting devices using PEDOT: PSS/graphene oxide composite anode. Org. Electron. 2015, 26, 81–85. [Google Scholar] [CrossRef]
- Seo, Y.K.; Joo, C.W.; Lee, J.; Han, J.W.; Cho, N.S.; Lim, K.T.; Yu, S.; Kang, M.H.; Yun, C.; Choi, B.H. Efficient ITO-free organic light-emitting diodes comprising PEDOT: PSS transparent electrodes optimized with 2-ethoxyethanol and post treatment. Org. Electron. 2016, 42, 348–354. [Google Scholar] [CrossRef]
- Li, H.; Ying, L.; Xin, Z.; Wang, X.; Liu, X. High-performance ITO-free electrochromic films based on bi-functional stacked WO3/Ag/WO3 structures. Sol. Energy Mater. Sol. Cells 2015, 136, 86–91. [Google Scholar] [CrossRef]
- Lin, B.; Lan, C.; Li, C.; Chen, Z. Effect of thermal annealing on the performance of WO3–Ag–WO3 transparent conductive film. Thin Solid Films 2014, 571, 134–138. [Google Scholar] [CrossRef]
- Koubli, E.; Tsakanikas, S.; Leftheriotis, G.; Syrrokostas, G.; Yianoulis, P. Optical properties and stability of near-optimum WO3/Ag/WO3 multilayers for electrochromic applications. Solid State Ion. 2015, 272, 30–38. [Google Scholar] [CrossRef]
- Kim, J.H.; Joo, C.W.; Lee, J.; Seo, Y.K.; Han, J.W.; Oh, J.Y.; Kim, J.S.; Yu, S.; Lee, J.H.; Lee, J.I. Highly Conductive PEDOT: PSS Films with 1,3-Dimethyl-2-Imidazolidinone as Transparent Electrodes for Organic Light-Emitting Diodes. Macromol. Rapid Commun. 2016, 37, 1427–1433. [Google Scholar] [CrossRef]
- Xu, K.; Chen, X.; Deng, J.; Zhu, Y.; Guo, W.; Mao, M.; Lei, Z.; Jie, S. Graphene transparent electrodes grown by rapid chemical vapor deposition with ultrathin indium tin oxide contact layers for GaN light emitting diodes. Appl. Phys. Lett. 2013, 102, 666. [Google Scholar]
- Son, K.J.; Kim, T.K.; Cha, Y.J.; Oh, S.K.; You, S.J.; Ryou, J.H.; Kwak, J.S. Impact of plasma electron flux on plasma damage-free sputtering of ultrathin tin-doped indium oxide contact layer onp-GaN for InGaN/GaN light-emitting diodes. Adv. Sci. 2018, 5, 1700637. [Google Scholar] [CrossRef]
- Lai, W.C.; Lin, C.N.; Lai, Y.C.; Yu, P.; Chi, G.C.; Chang, S.J. GaN-based light-emitting diodes with graphene/indium tin oxide transparent layer. Opt. Express 2014, 22, A396–A401. [Google Scholar] [CrossRef] [PubMed]
- Sun, G.; Khurgin, J.B.; Soref, R.A. Practicable enhancement of spontaneous emission using surface plasmons. Appl. Phys. Lett. 2007, 90, 11564. [Google Scholar] [CrossRef]
- Neogi, A.; Lee, C.-W.; Everitt, H.; Kuroda, T.; Tackeuchi, A.; Yablonovitch, E. Enhancement of spontaneous emission in a nitride based quantum well by resonant surface plasmon coupling. Phys. Rev. B Condens. Matter 2002, 66, 153305. [Google Scholar] [CrossRef]
- Chen, H.-S.; Chen, C.-F.; Kuo, Y.; Chou, W.-H.; Shen, C.-H.; Jung, Y.-L.; Kiang, Y.-W.; Yang, C.C. Surface plasmon coupled light-emitting diode with metal protrusions into p-GaN. Appl. Phys. Lett. 2013, 102, 041108. [Google Scholar] [CrossRef]
- Lin, C.H.; Su, C.Y.; Yang, K.; Chen, C.H.; Yao, Y.F.; Shih, P.Y.; Chen, H.S.; Hsieh, C.; Kiang, Y.W.; Yang, C.C. Further reduction of efficiency droop effect by adding a lower-index dielectric interlayer in a surface plasmon coupled blue light-emitting diode with surface metal nanoparticles. Appl. Phys. Lett. 2014, 105, 101106. [Google Scholar] [CrossRef]
- Lu, C.H.; Wu, S.E.; Lai, Y.L.; Li, Y.L.; Liu, C.P. Improved light emission of GaN-based light-emitting diodes by efficient localized surface plasmon coupling with silver nanoparticles. J. Alloys Compd. 2014, 585, 460–464. [Google Scholar] [CrossRef]
- Kuo, Y.; Chang, W.Y.; Chen, H.S.; Kiang, Y.W.; Yang, C.C. Surface plasmon coupling with a radiating dipole near a Ag nanoparticle embedded in GaN. Appl. Phys. Lett. 2013, 102, 161103. [Google Scholar] [CrossRef]
- Liu, X.; Gu, J.; Singh, R.; Ma, Y.; Zhu, J.; Zhen, T.; He, M.; Han, J.; Zhang, W. Electromagnetically induced transparency in terahertz plasmonicmetamaterials via dual excitation pathways of the dark mode. Appl. Phys. Lett. 2012, 100, 36. [Google Scholar]
- Singh, R.; Al-Naib, I.A.I.; Yang, Y.; Chowdhury, D.R.; Wei, C.; Rockstuhl, C.; Ozaki, T.; Morandotti, R.; Zhang, W. Observing metamaterial induced transparency in individual Fano resonators with broken symmetry. Appl. Phys. Lett. 2011, 99, 201107. [Google Scholar] [CrossRef] [Green Version]
- Xiao, S.; Wang, T.; Liu, T.; Yan, X.; Li, Z.; Xu, C. Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphenemetamaterials. Carbon 2018, 126, 271–278. [Google Scholar] [CrossRef]
- Manjappa, M.; Turaga, S.P.; Srivastava, Y.K.; Bettiol, A.A.; Singh, R. Magnetic annihilation of the dark mode in a strongly coupled bright-dark terahertz metamaterial. Opt. Lett. 2017, 42, 2106–2109. [Google Scholar] [CrossRef] [PubMed]
- Xiao, S.; Wang, T.; Jiang, X.; Yan, X.; Cheng, L.; Wang, B.; Chen, X. Strong interaction between graphene layer and Fano resonance in terahertz metamaterials. J. Phys. D Appl. Phys. 2017, 50, 195101. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Yuan, C.; Zhu, L.; Yao, J. Graphene-based tunable terahertz pplasmon-induced transparency metamaterial. Nanoscale 2016, 8, 15273–15280. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, E.; Tsukagoshi, K.; Yagi, I.; Aoyagi, Y. Fabrication of coulomb blockade device utilizing the 0.34 nm interlayer spacing in a multiwalled Carbon nanotube. Microelectron. Eng. 2004, 3–74, 666–669. [Google Scholar] [CrossRef]
- Low, F.W.; Lai, C.W.; Hamid, S.B.A. Surface modification of reduced graphene oxide film by Ti ion implantation technique for high dye-sensitized solar cells performance. Ceram. Int. 2017, 43, 625–633. [Google Scholar] [CrossRef]
- Dong, C. Evolution of Pt Clusters on Graphene Induced by Electron Irradiation. J. Appl. Mech. 2013, 80, 040904. [Google Scholar] [CrossRef]
- Kuo, Y.; Chang, W.Y.; Chen, H.S.; Wu, Y.R.; Yang, C.C.; Kiang, Y.W. Surface-plasmon-coupled emission enhancement of a quantum well with a metal nanoparticle embedded in a light-emitting diode. J. Opt. Soc. Am. B 2013, 30, 2599. [Google Scholar] [CrossRef]
- Fridén, J.; Razavi, A.; Stjernman, A.; Wu, Y.R.; Yang, C.C.; Kiang, Y.W. Angular sampling. Test Signal, and Near Field Aspects for Over-the-Air Total Radiated Power Assessment in Anechoic Chambers. IEEE Access 2018, 6, 57826–57839. [Google Scholar]
- Xie, R.; Li, Z.; Li, X.; Gu, E.; Niu, L.; Sha, X. Emission enhancement of light-emitting diode by localized surface plasmon induced by Ag/p-GaN double grating. Opt. Commun. 2018, 419, 108–113. [Google Scholar] [CrossRef]
- Li, Z.; Xie, R.; Li, X.; Gu, E.; Niu, L.; Sha, X. Luminous enhancement of nitride light-emitting diodes by localized surface plasmon and triangular structure. Superlattices Microstruct. 2018, 120, 127–135. [Google Scholar] [CrossRef]
- Yao, S.; Guo, Z.-Y.; Sun, H. Emission enhancement of surface plasmon coupled blue LED with a surface Al nanoparticle. IEEE Photonics Technol. Lett. 2017, 29, 1011–1014. [Google Scholar] [CrossRef]
- Zhao, M.Q.; Zhang, Q.; Huang, J.Q.; Tian, G.L.; Nie, J.Q.; Peng, H.J.; Wei, F. Unstacked double-layer templatedgraphene for high-rate lithium-sulphur batteries. Nat. Commun. 2014, 5, 3410. [Google Scholar] [CrossRef]
- Valmorra, F.; Scalari, G.; Maissen, C.; Fu, W.; SchoNenberger, C.; Choi, J.W.; Park, H.G.; Beck, M.; Faist, J. Low-bias active control of terahertz waves by coupling large-area CVD graphene to a terahertz metamaterial. Nano Lett. 2013, 13, 3193–3198. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Cui, M.; Wu, G.; Wang, T.; Mbengue, J.M.; Li, Y.; Li, M. Fast growth of large single-crystalline graphene assisted by sequential double oxygen passivation. Carbon 2017, 116, 133–138. [Google Scholar] [CrossRef]
- Sun, L.; Lin, L.; Zhang, J.; Wang, H.; Peng, H.; Liu, Z. Visualizing fast growth of large single-crystalline graphene by tunable isotopic carbon source. Nano Res. 2017, 10, 355–363. [Google Scholar] [CrossRef]
- Lin, L.; Li, J.; Ren, H.; Koh, A.L.; Kang, N.; Peng, H.; Xu, H.Q.; Liu, Z. Surface Engineering of Copper Foils for Growing Centimeter-Sized Single-Crystalline Graphene. ACS Nano 2016, 10, 2922–2929. [Google Scholar] [CrossRef]
- Buron, J.D.; Pizzocchero, F.; Jessen, B.S.; Booth, T.J.; Nielsen, P.F.; Hansen, O.; Hilke, M.; Whiteway, E.; Jepsen, P.U.; Bøggild, P.; et al. Electrically Continuous Graphene from Single Crystal Copper Verified by Terahertz Conductance Spectroscopy and Micro Four-Point Probe. Nano Lett. 2014, 14, 6348–6355. [Google Scholar] [CrossRef]
- Gan, L.; Luo, Z. Turning Off Hydrogen to Realize Seeded Growth of Sub-Centimeter Single Crystal Graphene Grains on Copper. ACS Nano 2013, 7, 9480–9488. [Google Scholar] [CrossRef]
- Chen, X.; Zhao, P.; Xiang, R.; Kim, S.; Cha, J.; Chiashi, S.; Maruyama, S. Chemical Vapor Deposition Growth of 5 mm Hexagonal Single-Crystal Graphene from Ethanol. Carbon 2015, 94, 810–815. [Google Scholar] [CrossRef]
- Sun, J.; Egbert, G.D. A thin-sheet model for global electromagnetic induction. Geophys. J. Int. 2018, 189, 343–356. [Google Scholar] [CrossRef]
- Sigman, J.B.; Barrowes, B.E.; O’Neill, K.; Wang, Y.; Simms, J.E.; Bennett, H.H.; Yule, D.E.; Shubitidze, F. High-Frequency Electromagnetic Induction Sensing of Nonmetallic Materials. IEEE Trans. Geosci. Remote Sens. 2017, 55, 5254–5263. [Google Scholar] [CrossRef]
- Gao, M.; Wang, Y.; Wang, Y.; Wang, P. Experimental investigation of non-linear multi-stable electromagnetic-induction energy harvesting mechanism by magnetic levitation oscillation. Appl. Energy 2018, 220, S030626191830518X. [Google Scholar] [CrossRef]
- Kholmanov, I.N.; Magnuson, C.W.; Aliev, A.E.; Li, H.; Zhang, B.; Suk, J.W.; Zhang, L.L.; Peng, E.; Mousavi, S.H.; Khanikaev, A.B. Improved electrical conductivity of graphene films integrated with metal nanowires. Nano Lett. 2012, 12, 5679. [Google Scholar] [CrossRef] [PubMed]
- Moradi, O.; Gupta, V.K.; Agarwal, S.; Tyagi, I.; Asif, M.; Makhlouf, A.S.H.; Sadegh, H.; Shahryari-ghoshekandi, R. Characteristics and electrical conductivity of graphene and graphene oxide for adsorption of cationic dyes from liquids: Kinetic and thermodynamic study. J. Ind. Eng. Chem. 2015, 28, 294–301. [Google Scholar] [CrossRef]
- Ijam, A.; Saidur, R.; Ganesan, P.; Golsheikh, A.M. Stability, thermo-physical properties, and electrical conductivity of graphene oxide-deionized water/ethylene glycol based nanofluid. Int. J. Heat Mass Transf. 2015, 87, 92–103. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, H.; Guo, Z.; Feng, S.; Sun, H.; Yao, S.; Wang, X.; Lu, D.; Zhang, Y.; Li, Y. Fabrication of Graphene-Metal Transparent Conductive Nanocomposite Layers for Photoluminescence Enhancement. Polymers 2019, 11, 1037. https://doi.org/10.3390/polym11061037
Huang H, Guo Z, Feng S, Sun H, Yao S, Wang X, Lu D, Zhang Y, Li Y. Fabrication of Graphene-Metal Transparent Conductive Nanocomposite Layers for Photoluminescence Enhancement. Polymers. 2019; 11(6):1037. https://doi.org/10.3390/polym11061037
Chicago/Turabian StyleHuang, Hongyong, Zhiyou Guo, Sitong Feng, Huiqing Sun, Shunyu Yao, Xidu Wang, Dong Lu, Yaohua Zhang, and Yuan Li. 2019. "Fabrication of Graphene-Metal Transparent Conductive Nanocomposite Layers for Photoluminescence Enhancement" Polymers 11, no. 6: 1037. https://doi.org/10.3390/polym11061037
APA StyleHuang, H., Guo, Z., Feng, S., Sun, H., Yao, S., Wang, X., Lu, D., Zhang, Y., & Li, Y. (2019). Fabrication of Graphene-Metal Transparent Conductive Nanocomposite Layers for Photoluminescence Enhancement. Polymers, 11(6), 1037. https://doi.org/10.3390/polym11061037