Degradation of Plastics under Anaerobic Conditions: A Short Review
Abstract
:1. Introduction
2. Methods
3. Results
3.1. Biodegradable Plastics Assessed under Anaerobic Conditions
3.1.1. Anaerobic Processes in Digestion Systems and Landfills
3.1.2. Degradation Mechanisms
3.2. Assessment of the Biodegradation Process under Anaerobic Conditions
3.2.1. Experimental Setup
3.2.2. Analytical Techniques Used to Assess Plastic Degradation and Biodegradation
3.3. Degradation of Different Plastics in Anaerobic Environments
3.3.1. Anaerobic Digestion
3.3.2. Landfill
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations
CA | cellulose acetate |
HDPE | high-density polyethylene |
LDPE | low-density polyethylene |
PCL | polycaprolactone |
PBAT | poly (butyleneadipate-co-terephthalate) |
PBS | polybutylene succinate |
PE | polyethylene |
PETE | polyethylene terephthalate |
PHA | Poly(3-hydroxyalkanoates) |
PHB | poly- (3-hydroxybutyrate) |
PHBH | polyhydroxybutyrate-co-polyhydroxyvalerate |
PHBO | poly(3-hydroxybutyrate-co-3-hydroxyoctanoate) |
PHBV | poly(3-hydroxybutyrate-co-3-hydroxyvalerate) |
PLA | polylactic acid |
PP | Polypropylene |
PS | Polystyrene |
PU | polyurethane |
PVA | polyvinyl alcohol |
References
- PlasticsEurope. Plastics-the Facts 2019 an Analysis of European Plastics Production, Demand and Waste Data; Wemmel-Belgium: Brussels, Belgium, 2019. [Google Scholar]
- Geyer, R.; Jambeck, J.R.; Law, K.L. Production, use, and fate of all plastics ever made. Sci. Adv. 2017, 3, e1700782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- INEGI. Anuario Estadístico y Geográfico de los Estados Unidos Mexicanos 2017; Instituto Nacional de Estadística y Geografía: Aguascalientes, Mexico, 2017; p. 1069. [Google Scholar]
- Derraik, J.G. The pollution of the marine environment by plastic debris: A review. Mar. Pollut. Bull. 2002, 44, 842–852. [Google Scholar] [CrossRef]
- Browne, M.A.; Crump, P.; Niven, S.J.; Teuten, E.; Tonkin, A.; Galloway, T.; Thompson, R. Accumulation of Microplastic on Shorelines Woldwide: Sources and Sinks. Environ. Sci. Technol. 2011, 45, 9175–9179. [Google Scholar] [CrossRef] [PubMed]
- Rajendran, S.; Scelsi, L.; Hodzic, A.; Soutis, C.; Al-Maadeed, M.A. Environmental impact assessment of composites containing recycled plastics. Resour. Conserv. Recycl. 2012, 60, 131–139. [Google Scholar] [CrossRef]
- Wäger, P.A.; Hischier, R. Life cycle assessment of post-consumer plastics production from waste electrical and electronic equipment (WEEE) treatment residues in a Central European plastics recycling plant. Sci. Total Environ. 2015, 529, 158–167. [Google Scholar] [CrossRef]
- Zhao, Y.B.; Lv, X.D.; Ni, H.G. Solvent-based separation and recycling of waste plastics: A review. Chemosphere 2018, 209, 707–720. [Google Scholar] [CrossRef]
- Jacobsen, R.; Willeghems, G.; Gellynck, X.; Buysse, J. Increasing the quantity of separated post-consumer plastics for reducing combustible household waste: The case of rigid plastics in Flanders. Waste Manag. 2018, 78, 708–716. [Google Scholar] [CrossRef]
- Webb, H.K.; Arnott, J.; Crawford, R.J.; Ivanova, E.P. Plastic degradation and its environmental implications with special reference to poly(ethylene terephthalate). Polymers 2013, 5, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Ragaert, K.; Delva, L.; van Geem, K. Mechanical and chemical recycling of solid plastic waste. Waste Manag. 2017, 69, 24–58. [Google Scholar] [CrossRef]
- Faussone, G.C. Transportation fuel from plastic: Two cases of study. Waste Manag. 2018, 73, 416–423. [Google Scholar] [CrossRef]
- Kunwar, B.; Cheng, H.N.; Chandrashekaran, S.R.; Sharma, B.K. Plastics to fuel: A review. Renew. Sustain. Energy Rev. 2016, 54, 421–428. [Google Scholar] [CrossRef]
- Adibah, W.; Mahari, W.; TungChong, C.; KuiCheng, C.; LeingLee, C.; KristianHendrata; Yek, P.N.; LingMa, N.; ShiungLam, S. Production of value-added liquid fuel via microwave co-pyrolysis of used frying oil and plastic waste. Energy 2018, 162, 309–317. [Google Scholar]
- Miandad, R.; Barakat, M.A.; Aburiazaiza, A.S.; Rehan, M.; Ismail, I.M.I.; Nizami, A.S. Effect of plastic waste types on pyrolysis liquid oil. Int. Biodeterior. Biodegrad. 2017, 119, 239–252. [Google Scholar] [CrossRef]
- Verma, R.; Vinoda, K.S.; Papireddy, M.; Gowda, A.N.S. Toxic pollutants from plastic waste- A Review. Procedia Environ. Sci. 2016, 35, 701–708. [Google Scholar] [CrossRef]
- O’Brien, J.; Thondhlana, G. Plastic bag use in South Africa: Perceptions, practices and potential intervention strategies. Waste Manag. 2019, 84, 320–328. [Google Scholar] [CrossRef]
- Rivers, N.; Shenstone-Harris, S.; Young, N. Using nudges to reduce waste? The case of Toronto’s plastic bag levy. J. Environ. Manag. 2017, 188, 153–162. [Google Scholar] [CrossRef]
- Wagner, T.P. Reducing single-use plastic shopping bags in the USA. Waste Manag. 2017, 70, 3–12. [Google Scholar] [CrossRef]
- Martinho, G.; Balaia, N.; Pires, A. The Portuguese plastic carrier bag tax: The effects on consumers’ behavior. Waste Manag. 2017, 61, 3–12. [Google Scholar] [CrossRef]
- Asmuni, S.; Hussin, N.B.; Khalili, J.M.; Zain, Z.M. Public Participation and Effectiveness of the no Plastic Bag Day Program in Malaysia. Procedia-Soc. Behav. Sci. 2015, 168, 328–340. [Google Scholar] [CrossRef] [Green Version]
- Jakovcevic, A.; Steg, L.; Mazzeo, N.; Caballero, R.; Franco, P.; Putrino, N.; Favara, J. Charges for plastic bags: Motivational and behavioral effects. J. Environ. Psychol. 2014, 40, 372–380. [Google Scholar] [CrossRef] [Green Version]
- Vázquez-Morillas, A.; Velasco-Pérez, M.; Espinosa-Valdemar, R.M.; Morales-Contreras, M.; Hernández-Islas, S.; Ordaz-Guillén, M.Y.L.; Almeida-Filgueira, H.J. Generación, legislación y valorización de residuos plásticos en Iberoamérica. Rev. Int. Contam. Ambient. 2016, 32, 63–76. [Google Scholar] [CrossRef] [Green Version]
- Ohtomo, S.; Ohnuma, S. Psychological interventional approach for reduce resource consumption: Reducing plastic bag usage at supermarkets. Resour. Conserv. Recycl. 2014, 84, 57–65. [Google Scholar] [CrossRef] [Green Version]
- Poortinga, W.; Whitmarsh, L.; Suffolk, C. The introduction of a single-use carrier bag charge in Wales: Attitude change and behavioural spillover effects. J. Environ. Psychol. 2013, 36, 240–247. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Q. An appraisal and analysis of the law of ‘Plastic-Bag Ban’. Energy Procedia 2011, 5, 2516–2521. [Google Scholar] [CrossRef] [Green Version]
- Njeru, J. The urban political ecology of plastic bag waste problem in Nairobi, Kenya. Geoforum 2006, 37, 1046–1058. [Google Scholar] [CrossRef]
- Siegenthaler, K.O.; Künkel, A.; Skupin, G.; Yamamoto, M. Ecoflex® and Ecovio®: Biodegradable, Performance-Enabling Plastics. In Advances in Polymer Science; Springer-Verlag: Berlin/Heidelberg, Germany, 2012; pp. 91–136. [Google Scholar]
- ASTM International. ASTM D883-17 Standard Terminology Relating to Plastics; ASTM International: Pennsylvania, PA, USA, 2017; p. 16. [Google Scholar]
- Degli-Innocenti, F. Biodegradability and compostability. In Biodegradable Polymers and Plastics, 1st ed.; Chiellini, E., Solaro, R., Eds.; Kluwer Academic Publishers-Plenum Publishers: Tirrenia, Italy, 2002; p. 395. [Google Scholar]
- ASTM D6400-04. ASTM D 6400-04 Standard Specification for Compostable Plastics; America Society for Testing and Materials: West Conshohocken, PA, USA, 2009. [Google Scholar]
- EN 13432. Packaging-Requirements for Packaging Recoverable Through Composting and Biodegradation. Test Scheme and Evaluation Criteria for the Final Acceptance of Packaging; European Committee for Standardisation: Brussels, Belgium, 2000. [Google Scholar]
- GESAMP Sources, fate and effects of microplastics in the marine environment: Part 2 of a global assessment. Rep. Stud. Jt. Group Expertes Sci. Asp. Mar. Environ. Protecion 2016, 93, 217.
- Andrady, A.L. Microplastics in the marine environment. Mar. Pollut. Bull. 2011, 62, 1596–1605. [Google Scholar] [CrossRef] [PubMed]
- Vroom, R.J.E.; Koelmans, A.A.; Besseling, E.; Halsband, C. Aging of microplastics promotes their ingestion by marine zooplankton. Environ. Pollut. 2017, 231, 987–996. [Google Scholar] [CrossRef]
- Bellas, J.; Martínez-Armental, J.; Martínez-Cámara, A.; Besada, V.; Martínez-Gómez, C. Ingestion of microplastics by demersal fish from the Spanish Atlantic and Mediterranean coasts. Mar. Pollut. Bull. 2016, 109, 55–60. [Google Scholar] [CrossRef]
- Brennecke, D.; Duarte, B.; Paiva, F.; Caçador, I.; Canning-Clode, J. Microplastics as vector for heavy metal contamination from the marine environment. Estuar. Coast. Shelf Sci. 2016, 178, 189–195. [Google Scholar] [CrossRef]
- Kedzierski, M.; D’Almeida, M.; Magueresse, A.; le Grand, A.; Duval, H.; César, G.; Sire, O.; Bruzaud, S.; Le Tilly, V. Threat of plastic ageing in marine environment. Adsorption/desorption of micropollutants. Mar. Pollut. Bull. 2018, 127, 684–694. [Google Scholar] [CrossRef] [PubMed]
- Koelmans, A.A.; Besseling, E.; Foekema, E.M. Leaching of plastic additives to marine organisms. Environ. Pollut 2014, 187, 49–54. [Google Scholar] [CrossRef] [PubMed]
- Hermabessiere, L.; Dehaut, A.; Paul-Pont, I.; Lacroix, C.; Jezequel, R.; Soudant, P.; Duflos, G. Occurrence and effects of plastic additives on marine environments and organisms: A review. Chemosphere 2017, 182, 781–793. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eerkes-Medrano, D.; Thompson, R. Occurrence, Fate, and Effect of Microplastics in Freshwater Systems; Elsevier Inc.: Amsterdam, The Netherlands, 2018. [Google Scholar]
- van Wijnen, J.; Ragas, A.M.J.; Kroeze, C. Modelling global river export of microplastics to the marine environment: Sources and future trends. Sci. Total Environ. 2019, 673, 392–401. [Google Scholar] [CrossRef]
- de Souza Machado, A.A.; Lau, C.W.; Till, J.; Kloas, W.; Lehmann, A.; Becker, R.; Rillig, M.C. Impacts of microplastics on the soil biophysical environment. Environ. Sci. Technol. 2018, 52, 9656–9665. [Google Scholar] [CrossRef] [Green Version]
- Rillig, M.C.; Lehmann, A.; Machado, A.A.S.; Yang, G. Microplastic effects on plants. New Phytol. 2019, 223, 1066–1070. [Google Scholar] [CrossRef] [Green Version]
- Gasperi, J.; Wright, S.L.; Dris, R.; Collard, F.; Mandin, C.; Guerrouache, M.; Langlois, V.; Kelly, F.J.; Tassi, B. Microplastics in air: Are we breathing it in? Curr. Opin. Environ. Sci. Heal. 2018, 1, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Wright, S.L.; Kelly, F.J. Plastic and Human Health: A Micro Issue? Environ. Sci. Technol. 2017, 51, 6634–6647. [Google Scholar] [CrossRef]
- Rujnić-Sokele, M.; Pilipović, A. Challenges and opportunities of biodegradable plastics: A mini review. Waste Manag. Res. 2017, 35, 132–140. [Google Scholar] [CrossRef]
- Rena, P.G.; Kumar, S. Chapter 6-Landfill Gas as an Energy Source. In Current Developments in Biotechnology and Bioengineering; Kumar, S., Kumar, R., Pandey, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 93–117. [Google Scholar]
- Ji, C.; Kong, C.X.; Mei, Z.L.; Li, J. A Review of the Anaerobic Digestion of Fruit and Vegetable Waste. Appl. Biochem. Biotechnol. 2017, 183, 906–922. [Google Scholar] [CrossRef]
- Yoon, Y.M.; Kim, S.H.; Oh, S.Y.; Kim, C.H. Potential of anaerobic digestion for material recovery and energy production in waste biomass from a poultry slaughterhouse. Waste Manag. 2014, 34, 204–209. [Google Scholar] [CrossRef]
- Dadaser-Celik, F.; Azgin, S.T.; Yildiz, Y.S. Optimization of solid content, carbon/nitrogen ratio and food/inoculum ratio for biogas production from food waste. Waste Manag. Res. 2016, 34, 1241–1248. [Google Scholar] [CrossRef]
- Šan, I.; Onay, T.T. Impact of various leachate recirculation regimes on municipal solid waste degradation. J. Hazard. Mater. 2001, 87, 259–271. [Google Scholar] [CrossRef]
- Cuartas, M.; López, A.; Pérez, F.; Lobo, A. Analysis of landfill design variables based on scientific computing. Waste Manag. 2018, 71, 287–300. [Google Scholar] [CrossRef]
- Hernández-Berriel, M.C.; Márquez-Benavides, L.; González-Pérez, D.J.; Buenrostro-Delgado, O. The effect of moisture regimes on the anaerobic degradation of municipal solid waste from Metepec (México). Waste Manag. 2008, 28, S14–S20. [Google Scholar] [CrossRef]
- Lv, S.; Zhang, Y.; Tan, H. Thermal and thermo-oxidative degradation kinetics and characteristics of poly (lactic acid) and its composites. Waste Manag. 2019, 87, 335–344. [Google Scholar] [CrossRef]
- Jamaluddin, N.; Razaina, M.T.; Ishak, Z.A.M. Mechanical and Morphology Behaviours of Polybutylene (succinate)/Thermoplastic Polyurethaneblend. Procedia Chem. 2016, 19, 426–432. [Google Scholar] [CrossRef] [Green Version]
- Shi, X.Q.; Ito, H.; Kikutani, T. Characterization on mixed-crystal structure and properties of poly(butylene adipate-co-terephthalate) biodegradable fibers. Polym. Guildf 2005, 46, 11442–11450. [Google Scholar] [CrossRef]
- Khanal, S.K. Anaerobic Biotechnology for Bioenergy Production: Principles and Applications; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2008. [Google Scholar]
- Siles, J.A.; Brekelmans, J.; Martín, M.A.; Chica, A.F.; Martín, A. Impact of ammonia and sulphate concentration on thermophilic anaerobic digestion. Bioresour. Technol. 2010, 101, 9040–9048. [Google Scholar] [CrossRef] [PubMed]
- Abdul-Sattar, N. Anaerobic digestion: Processes, products and applications. In Anaerobic Disgestion; Caruana, D.J., Olsen, A.E., Eds.; Nova Science Publishers, Inc.: New York, NY, USA, 2012. [Google Scholar]
- Mohee, R.; Unmar, G.D.; Mudhoo, A.; Khadoo, P. Biodegradability of biodegradable/degradable plastic materials under aerobic and anaerobic conditions. Waste Manag. 2008, 28, 1624–1629. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez-Wing, M.T.; Stevens, B.E.; Theegala, C.S.; Negulescu, I.I.; Rusch, K.A. Anaerobic biodegradation of polyhydroxybutyrate in municipal sewage sludge. J. Environ. Eng. 2010, 136, 709–718. [Google Scholar] [CrossRef]
- Mezzanotte, V.; Bertani, R.; Innocenti, F.D.; Tosin, M. Influence of inocula on the results of biodegradation tests. Polym. Degrad. Stab. 2005, 87, 51–56. [Google Scholar] [CrossRef]
- Vaverková, D.A.M. Degradation of biodegradable/degradable plastics in municipal solid-waste landfill. Polish J. Environ. Stud. 2014, 23, 1071–1078. [Google Scholar]
- Ishigaki, T.; Sugano, W.; Nakanishi, A.; Tateda, M.; Ike, M.; Fujita, M. The degradability of biodegradable plastics in aerobic and anaerobic waste landfill model reactors. Chemosphere 2004, 54, 225–233. [Google Scholar] [CrossRef]
- Landreth, R. Use of Municipal Solid Waste Landfills as Biochemical Reactors. U.S.; EPA/600/A-94/248 (NTIS PB95155099): Washington, DC, USA, 2002.
- Cossu, R.; Morello, L.; Stegmann, R. 3.1-Biochemical Processes in Landfill. In Solid Waste Landfilling; Cossu, R., Stegmann, R., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 91–115. [Google Scholar]
- Batarseh, E.S.; Reinhart, D.R.; Berge, N.D. Sustainable disposal of municipal solid waste: Post bioreactor landfill polishing. Waste Manag. 2010, 30, 2170–2176. [Google Scholar] [CrossRef] [PubMed]
- Raichev, R.; Veleva, L.; Valdez, B. Corrosión de metales y degradación de materiales. In Principios y Prácticas de Laboratorio; Departamento de Editorial Universitaria: CINVESTAV Mérida/UABC-Mexicali: Mexicali, Mexico, 2009; pp. 184–187. [Google Scholar]
- Singh, B.; Sharma, N. Mechanistic implications of plastic degradation. Polym. Degrad. Stab. 2008, 93, 561–584. [Google Scholar] [CrossRef]
- Aguilar, L. Evaluación del Deterioro de Polímero Sellante de Juntas de Motor en un Ambiente con Mezclas de Etanol-Gasolina. Bachelor’s Thesis, Universidad Industrial de Santander, Bucaramanga, Colombia, 2011. [Google Scholar]
- Carballa, M.; Manterola, G.; Larrea, L.; Ternes, T.; Omil, F.; Lema, J.M. Influence of ozone pre-treatment on sludge anaerobic digestion: Removal of pharmaceutical and personal care products. Chemosphere 2007, 67, 1444–1452. [Google Scholar] [CrossRef]
- Adamcová, D.; Vaverková, M.D. New polymer behavior under the landfill conditions. Waste Biomass Valorization 2016, 7, 1459–1467. [Google Scholar] [CrossRef]
- Goómez, E.F.; Luo, X.; Li, C.; Michel, F.C., Jr.; Yebo, L. Biodegradability of crude glycerol-based polyurethane foams during composting, anaerobic digestion and soil incubation. Polym. Degrad. Stabilit 2014, 102, 195–203. [Google Scholar] [CrossRef]
- Lima, V.; Hossain, U.H.; Walbert, T.; Seidl, T.; Ensinger, W. Mass spectrometric comparison of swift heavy ion-induced and anaerobic thermal degradation of polymers. Radiat. Phys. Chem. 2018, 144, 21–28. [Google Scholar] [CrossRef] [Green Version]
- Vernáez, O.; Dagreou, S.; Grassl, B.; Müller, A.J. Degradation of styrene butadiene rubber (SBR) in anaerobic conditions. Polym. Degrad. Stab. 2015, 111, 159–168. [Google Scholar] [CrossRef]
- Gorrasi, G.; Pantani, R. Hydrolysis and Biodegradation of Poly(lactic acid). In Advances in Polymer Science; Springer New York LLC.: New York, NY, USA, 2018. [Google Scholar]
- Ryan, C.A.; Billington, S.L.; Criddle, C.S. Methodology to assess end-of-life anaerobic biodegradation kinetics and methane production potential for composite materials. Compos. Part. A Appl. Sci. Manuf. 2017, 95, 388–399. [Google Scholar] [CrossRef]
- Arvanitoyannis, I.; Biliaderis, C.G.; Ogawa, H.; Kawasaki, N. Biodegradable films made from low-density polyethylene (LDPE), rice starch and potato starch for food packaging applications: Part 1. Carbohydr. Polym. 1998, 36, 89–104. [Google Scholar] [CrossRef]
- Xing, W.; Lu, W.; Zhao, Y.; Zhang, X.; Deng, W.; Christensen, T.H. Environmental impact assessment of leachate recirculation in landfill of municipal solid waste by comparing with evaporation and discharge (EASEWASTE). Waste Manag. 2013, 33, 382–389. [Google Scholar] [CrossRef] [PubMed]
- Feng, S.J.; Chen, Z.W.; Chen, H.X.; Zheng, Q.T.; Liu, R. Slope stability of landfills considering leachate recirculation using vertical wells. Eng. Geol. 2018, 241, 76–85. [Google Scholar] [CrossRef]
- Jain, P.; HacKo, J.; Kumar, D.; Powell, J.; Kim, H.; Maldonado, L.; Townsend, T.; Reinhart, D.R. Case study of landfill leachate recirculation using small-diameter vertical wells. Waste Manag. 2014, 34, 2312–2320. [Google Scholar] [CrossRef]
- Dvorackova, M.; Svoboda, P.; Kostka, L.; Pekarova, S. Influence of biodegradation in thermophilic anaerobic aqueous conditions on crystallization of poly(butylene succinate). Polym. Test. 2015, 47, 59–70. [Google Scholar] [CrossRef]
- Iwańczuk, A.; Kozłowski, M.; Łukaszewicz, M.; Jabłoński, S. Anaerobic biodegradation of polymer composites filled with natural fibers. J. Polym. Environ. 2015, 23, 277–282. [Google Scholar] [CrossRef] [Green Version]
- Yagi, H.; Ninomiya, F.; Funabashi, M.; Kunioka, M. Thermophilic anaerobic biodegradation test and analysis of eubacteria involved in anaerobic biodegradation of four specified biodegradable polyesters. Polym. Degrad. Stab. 2013, 98, 1182–1187. [Google Scholar] [CrossRef]
- Yagi, H.; Ninomiya, F.; Funabashi, M.; Kunioka, M. Mesophilic anaerobic biodegradation test and analysis of eubacteria and archaea involved in anaerobic biodegradation of four specified biodegradable polyesters. Polym. Degrad. Stab. 2014, 110, 278–283. [Google Scholar] [CrossRef]
- Yagi, H.; Ninomiya, F.; Funabashi, M.; Kunioka, M. Anaerobic biodegradation tests of poly(lactic acid) and polycaprolactone using new evaluation system for methane fermentation in anaerobic sludge. Polym. Degrad. Stab. 2009, 94, 1397–1404. [Google Scholar] [CrossRef]
- Boonmee, J.; Kositanont, C.; Leejarkpai, T. Biodegradation of poly (lactic acid), poly (hydroxybutyrate-co-hydroxyvalerate), poly (butylene succinate) and poly(butylene adipate-co-terephthalate) under anaerobic and oxygen limited thermophilic conditions. Environ. Asia 2016, 9, 107–115. [Google Scholar]
- Abou-Zeid, D.-M.; Müller, R.-J.; Deckwer, W.D. Degradation of natural and syntehtic polyesters under anaerobic conditions. J. Biotechnol. 2001, 86, 113–126. [Google Scholar] [CrossRef]
- Nauendorf, A.; Krause, S.; Bigalke, N.K.; Gorb, E.V.; Gorb, S.N.; Haeckel, M.; Wahl, M.; Treude, T. Microbial colonization and degradation of polyethylene and biodegradable plastic bags in temperate fine-grained organic-rich marine sediments. Mar. Pollut. Bull. 2016, 103, 1–2. [Google Scholar] [CrossRef] [PubMed]
- Rivard, C.; Moens, L.; Roberts, K.; Brigham, J.; Kelley, S. Starch esters as biodegradable plastics: Effects of ester group chain length and degree of substitution on anaerobic biodegradation. Enzyme Microb. Technol. 1995, 17, 848–852. [Google Scholar] [CrossRef]
- Halley, P.J.; Truss, R.W.; Markotsis, M.G.; Chaleat, C.; Russo, M.; Sargent, A.L.; Tan, I.; Sopade, P.A. A Review of Biodegradable Thermoplastic Starch Polymers. In Polymer Durability and Radiation Effects; American Chemical Society: Washington, DC, USA, 2007; pp. 287–300. [Google Scholar]
- Mackuľak, T.; Takáčová, A.; Gál, M.; Marton, M.; Ryba, J. PVC degradation by fenton reaction and biological decomposition. Polym. Degrad. Stab. 2015, 120, 226–231. [Google Scholar] [CrossRef]
- Morse, M.C.; Liao, Q.; Criddle, C.S.; Frank, C.W. Anaerobic biodegradation of the microbial copolymer poly(3-hydroxybutyrate-co-3-hydroxyhexanoate): Effects of comonomer content, processing history, and semi-crystalline morphology. Polym. Guildf 2011, 52, 547–556. [Google Scholar] [CrossRef]
- McDevitt, J.P.; Criddle, C.S.; Morse, M.; Hale, R.C.; Bott, C.B.; Rochman, C.M. Addressing the Issue of Microplastics in the Wake of the Microbead-Free Waters Act - A New Standard Can Facilitate Improved Policy. Environ. Sci. Technol. 2017, 51, 6611–6617. [Google Scholar] [CrossRef] [Green Version]
- ASTM International. ASTM D5511-18 Standard Test Method for Determining Anaerobic Biodegradation of Plastic Materials Under High-Solids Anaerobic-Digestion Conditions; ASTM: West Conshohocken, PA, USA, 2018; p. 7. [Google Scholar]
- ASTM International. ASTM D7475-11 Standard Test Method for Determining the Aerobic Degradation and Anaerobic Biodegradation of Plastic Materials Under Accelerated Bioreactor Landfill Conditions; ASTM: West Conshohocken, PA, USA, 2011; p. 9. [Google Scholar]
- ASTM International. ASTM D5526-12 Standard Test Method for Determining the Aerobic Degradation and Anaerobic Biodegradation of Plastic Materials Under Accelerated Bioreactor Landfill Conditions; ASTM: West Conshohocken, PA, USA, 2012; p. 6. [Google Scholar]
- ISO 15985:2014(en), Plastics—Determination of the Ultimate Anaerobic Biodegradation under High-Solids Anaerobic-Digestion Conditions—Method by Analysis of Released Biogas. [En línea]. Available online: https://www.iso.org/obp/ui/#iso:std:iso:15985:ed-2:v1:en (accessed on 3 November 2019).
- ISO 13975:2019(en), Plastics—Determination of the Ultimate Anaerobic Biodegradation of Plastic Materials in Controlled Slurry Digestion Systems—Method by Measurement of Biogas Production. [En línea]. Available online: https://www.iso.org/obp/ui/#iso:std:iso:13975:ed-2:v1:en (accessed on 3 November 2019).
- ISO 14853:2016(en), Plastics—Determination of the Ultimate Anaerobic Biodegradation of Plastic Materials in an Aqueous System—Method by Measurement of Biogas Production. [En línea]. Available online: https://www.iso.org/obp/ui/#iso:std:iso:14853:ed-2:v1:en (accessed on 3 November 2019).
- Day, M.; Shaw, K.; Cooney, D. Biodegradability: An assessment of commercial polymers according to the Canadian method for anaerobic conditions. J. Environ. Polym. Degrad. 1994, 2, 121–127. [Google Scholar] [CrossRef]
- Yagi, H.; Ninomiya, F.; Funabashi, M.; Kunioka, M. Anaerobic Biodegradation of Poly (Lactic Acid) Film in Anaerobic Sludge. J. Polym. Environ. 2012, 20, 673–680. [Google Scholar] [CrossRef]
- Massardier-Nageotte, V.; Pestre, C.; Cruard-Pradet, T.; Bayard, R. Aerobic and anaerobic biodegradability of polymer films and physico-chemical characterization. Polym. Degrad. Stab. 2006, 91, 620–627. [Google Scholar] [CrossRef]
- Lee, J.C.; Moon, J.H.; Jeong, J.-H.; Kim, M.Y.; Kim, B.M.; Choi, M.-C.; Kim, J.R. Biodegradability of poly(lactic acid) (PLA)/lactic acid (LA) blends using anaerobic digester sludge. Macromol. Res. 2016, 24, 741–747. [Google Scholar] [CrossRef]
- Selke, S.; Auras, R.; Nguyen, T.A.; Castro Aguirre, E.; Cheruvathur, R.; Liu, Y. Evaluation of biodegradation-promoting additives for plastics. Environ. Sci. Technol. 2015, 49, 3769–3777. [Google Scholar] [CrossRef] [PubMed]
- Hermanová, S.; Šmejkalová, P.; Merna, J.; Zarevúcka, M. Biodegradation of waste PET based copolyesters in thermophilic anaerobic sludge. Polym. Degrad. Stab. 2015, 111, 176–184. [Google Scholar] [CrossRef]
- Wang, F.; Hidaka, T.; Tsuno, H.; Tsubota, J. Co-digestion of polylactide and kitchen garbage in hyperthermophilic and thermophilic continuous anaerobic process. Bioresour. Technol. 2012, 112, 67–74. [Google Scholar] [CrossRef] [Green Version]
- Soda, S.; Iwama, K.; Yokoe, K.; Okada, Y.; Ike, M. High methane production potential of activated sludge accumulating polyhydroxyalkanoates in anaerobic digestion. Biochem. Eng. J. 2016, 114, 283–287. [Google Scholar] [CrossRef]
- Petit, M.G.; Correa, Z.; Sabino, M.A. Degradation of a Polycaprolactone/Eggshell Biocomposite in a Bioreactor. J. Polym. Environ. 2015, 23, 11–20. [Google Scholar] [CrossRef]
- Xiao, D.; Matsuda, J.; Liu, B.; Ohmiya, K. Characteristics of fermentation of biodegradable plastics mixed with household solid waste by thermophilic dry anaerobic co-digestion. J. Jpn. Soc. Agric. Mach. 2009, 71, 55–62. [Google Scholar]
- Shin, P.K.; Kim, M.H.; Kim, J.M. Biodegradability of degradable plastics exposed to anaerobic digested sludge and simulated landfill conditions. J. Environ. Polym. Degrad. 1997, 5, 33–39. [Google Scholar]
- Yagi, H.; Ninomiya, F.; Funabashi, M.; Kunioka, M. Anaerobic biodegradation tests of poly(lactic acid) under mesophilic and thermophilic conditions using a new evaluation system for methane fermentation in anaerobic sludge. Int. J. Mol. Sci. 2009, 10, 3824–3835. [Google Scholar] [CrossRef] [Green Version]
- Shi, B.; Palfery, D. Enhanced mineralization of PLA meltblown materials due to plasticization. J. Polym. Environ. 2010, 18, 122–127. [Google Scholar] [CrossRef]
- Rivard, C.J.; Adney, W.S.; Himmel, M.E.; Mitchell, D.J.; Vinzant, T.B.; Grohmann, K.; Moens, L.; Chum, H. Effects of natural polymer acetylation on the anaerobic bioconversion to methane and carbon dioxide. Appl. Biochem. Biotechnol. 1992, 34, 725–736. [Google Scholar] [CrossRef]
- Lim, J.W.; Ting, D.W.Q.; Loh, K.C.; Ge, T.; Tong, Y.W. Effects of disposable plastics and wooden chopsticks on the anaerobic digestion of food waste. Waste Manag. 2018, 79, 607–614. [Google Scholar] [CrossRef] [PubMed]
- Vázquez-Morillas, A.; Hermoso-López Araiza, J.P.; Álvarez-Zeferino, J.C.; Beltrán-Villavicencio, M.; Espinosa-Valdemar, R.M.; Quecholac-Piña, X.; Sotelo-Navarro, P.X.; Velasco-Pérez, M. Utilities such as purchase bags, goods packaging and composting bags. In Green Polymer Composites Technology; Inamuddin, ed.; CRC Press: Boca Raton, FL, USA, 2017; pp. 83–92. [Google Scholar]
- Shanks, R.; Kong, I. Thermoplastic Starch. In Thermoplastic Elastomers; El-Sonbati, P.A., Ed.; InTech: London, UK, 2012. [Google Scholar]
- Krupp, L.R.; Jewell, W.J. Biodegradability of modified plastic films in controlled biological environments. Environ. Sci. Technol. 1992, 26, 193–198. [Google Scholar] [CrossRef]
- Breslin, V.T. Degradation of starch-plastic composites in a municipal solid waste landfill. J. Environ. Polym. Degrad. 1993, 1, 127–141. [Google Scholar] [CrossRef]
- Zhang, W.; Heaven, S.; Banks, C.J. Degradation of some EN13432 compliant plastics in simulated mesophilic anaerobic digestion of food waste. Polym. Degrad. Stab. 2018, 147, 76–88. [Google Scholar] [CrossRef] [Green Version]
- Weiwei, L.; Juan, X.; Beijiu, C.; Suwen, Z.; Qing, M.; Huan, M. Anaerobic biodegradation, physical and structural properties of normal and high-amylose maize starch films. Int. J. Agric. Biol. Eng. 2016, 9, 184–193. [Google Scholar]
- Gómez, E.F.; Michel, F.C. Biodegradability of conventional and bio-based plastics and natural fiber composites during composting, anaerobic digestion and long-term soil incubation. Polym. Degrad. Stab. 2013, 98, 2583–2591. [Google Scholar] [CrossRef]
- Cho, H.S.; Moon, H.S.; Kim, M.; Nam, K.; Kim, J.Y. Biodegradability and biodegradation rate of poly(caprolactone)-starch blend and poly(butylene succinate) biodegradable polymer under aerobic and anaerobic environment. Waste Manag. 2011, 31, 475–480. [Google Scholar] [CrossRef]
- Šmejkalová, P.; Kužníková, V.; Merna, J.; Hermanová, S. Anaerobic digestion of aliphatic polyesters. Water Sci. Technol. 2016, 73, 2386–2393. [Google Scholar] [CrossRef]
- Budwill, K.; Fedorak, P.M.; Page, W.J. Methanogenic degradation of poly(3-hydroxyalkanoates). Appl. Environ. Microbiol. 1992, 58, 1398–1401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ryan, C.A.; Billington, S.L.; Criddle, C.S. Assessment of models for anaerobic biodegradation of a model bioplastic: Poly(hydroxybutyrate-co-hydroxyvalerate). Bioresour. Technol. 2017, 227, 205–213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reischwitz, A.; Stoppok, E.; Buchholz, K. Anaerobic degradation of poly-3-hydroxybutyrate and poly-3-hydroxybutyrate-co-3-hydroxyvalerate. Biodegradation 1997, 8, 313–319. [Google Scholar] [CrossRef] [PubMed]
- Kolstad, J.J.; Vink, E.T.H.; de Wilde, B.; Debeer, L. Assessment of anaerobic degradation of Ingeo™ polylactides under accelerated landfill conditions. Polym. Degrad. Stab. 2012, 97, 1131–1141. [Google Scholar] [CrossRef]
- Yagi, H.; Ninomiya, F.; Funabashi, M.; Kunioka, M. RNA analysis of anaerobic sludge during anaerobic biodegradation of cellulose and poly(lactic acid) by RT-PCR–DGGE. Polym. Degrad. Stab. 2011, 96, 547–552. [Google Scholar] [CrossRef]
- Wang, F.; Tsuno, H.; Hidaka, T.; Tsubota, J. Promotion of polylactide degradation by ammonia under hyperthermophilic anaerobic conditions. Bioresour. Technol. 2011, 102, 9933–9941. [Google Scholar] [CrossRef]
- Yagi, H.; Ninomiya, F.; Funabashi, M.; Kunioka, M. Bioplastic biodegradation activity of anaerobic sludge prepared by preincubation at 55°C for new anaerobic biodegradation test. Polym. Degrad. Stab. 2010, 95, 1349–1355. [Google Scholar] [CrossRef]
- Vargas, L.F.; Welt, B.A.; Teixeira, A.; Pullammanappallil, P.; Balaban, M.; Beatty, C. Biodegradation of treated polylactic acid (PLA) under anaerobic conditions. Am. Soc. Agric. Biol. Eng. 2009, 52, 1025–1030. [Google Scholar]
- Guo, M.; Trzcinski, A.P.P.; Stuckey, D.C.C.; Murphy, R.J.J. Anaerobic digestion of starch–polyvinyl alcohol biopolymer packaging: Biodegradability and environmental impact assessment. Bioresour. Technol. 2011, 102, 11137–11146. [Google Scholar] [CrossRef]
- Urgun-Demirtas, M.; Singh, D.; Pagilla, K. Laboratory investigation of biodegradability of a polyurethane foam under anaerobic conditions. Polym. Degrad. Stab. 2007, 92, 1599–1610. [Google Scholar] [CrossRef]
- Tollner, E.W.; Annis, P.A.; Das, K.C. Evaluation of Strength Properties of Polypropylene-Based Polymers in Simulated Landfill and Oven Conditions. J. Environ. Eng. 2011, 137, 291–296. [Google Scholar] [CrossRef]
- Björn, A.; Hörsing, M.; Karlsson, A.; Mersiowsky, I.; Ejlertsson, J. Impacts of temperature on the leaching of organotin compounds from poly(vinyl chloride) plastics-A study conducted under simulated landfill conditions. J. Vinyl Addit. Technol. 2007, 13, 176–188. [Google Scholar] [CrossRef]
Biodegradable Plastic | Acronym | Monomer | Reference |
---|---|---|---|
Polylactic acid | PLA | [55] | |
Polycaprolactone | PCL | [55] | |
Polybutylene succinate | PBS | [56] | |
Poly(butyleneadipate-co-terephthalate) | PBAT | [57] | |
Poly-(3-hydroxyburyate) | PHB | [55] | |
Polyhydroxybutyrate-co-polyhydroxyvalerate | PHBV | [55] |
Method | Description |
---|---|
ASTM D5511-18 | Biodegradation under high-solids (>30%) anaerobic digestion conditions |
ASTM D7475-11 | Aerobic degradation and anaerobic biodegradation of plastic materials under accelerated bioreactor landfill conditions |
ASTM D5526-18 | Anaerobic biodegradation under accelerated landfill conditions |
ISO 15985: 2014 | Anaerobic biodegradation under high-solids anaerobic digestion conditions (solids <20%) |
ISO 13975: 2019 | Anaerobic biodegradation in controlled slurry digestion systems (solids <15%) |
ISO 14853: 2016 | Anaerobic biodegradation in aqueous systems |
Plastic | % Biodegradation | Temperature (°C) | Time (Days) | Reference |
---|---|---|---|---|
PBS | 0.0 | 37 | 277 | [86] |
0.0 | 55 | 50 | [85] | |
2.0 | 35 | 139 | [124] | |
PCL | 62.0 | 55 | 150 | [125] |
12.5 | 37 | 277 | [86] | |
80.0 | 55 | 50 | [85] | |
92.0 | 55 | 75 | [87] | |
PCL-starch | 83.0 | 35 | 139 | [124] |
PHB | 92.5 | 37 | 277 | [86] |
90.0 | 55 | 50 | [85] | |
100 | 35 | 225 | [62] | |
87 | 35 | 16 | [126] | |
PHBV | 86.0 | 37 | 42 | [127] |
90 | 35 | 30 | [128] | |
80 | 35 | 100 | [112] | |
PHBV-PHB | 96 | 35 | 16 | [126] |
91.4 | 58 | 60 | [119] | |
PLA | 74.0 | 55 | 150 | [119] |
39.0 | 37 | 277 | [86] | |
75.0 | 55 | 50 | [85] | |
36.0 | 35 | 170 | [129] | |
77.2 | 55 | 57 | [129] | |
70.0 | 55 | 45 | [130] | |
81.8 | 80 | 22 | [131] | |
91.5 | 37 | 100 | [132] | |
0.1 | 37 | 56 | [132] | |
98.9 | 58 | 56 | [132] | |
80.0 | 52 | 56 | [112] | |
21.0 | 35 | 75 | [133] | |
93.0 | 55 | 75 | [133] | |
79.0 | 55 | 75 | [87] | |
89 | 35 | 100 | [112] | |
PLA-poly(propylene glicol) | 90.0 | 35 | 182 | [114] |
PVA-starch | 52.0 | 35 | 26 | [122] |
60.0 | 37 | 115 | [134] | |
PETE + pro-oxidant additive | 2.2 | 37 | 50 | [123] |
PP + pro-oxidant additive | 3.1 | 37 | 50 | [123] |
PP + starch | 26.4 | 37 | 50 | [123] |
PU | 8.95 | 37 | 105 | [74] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quecholac-Piña, X.; Hernández-Berriel, M.d.C.; Mañón-Salas, M.d.C.; Espinosa-Valdemar, R.M.; Vázquez-Morillas, A. Degradation of Plastics under Anaerobic Conditions: A Short Review. Polymers 2020, 12, 109. https://doi.org/10.3390/polym12010109
Quecholac-Piña X, Hernández-Berriel MdC, Mañón-Salas MdC, Espinosa-Valdemar RM, Vázquez-Morillas A. Degradation of Plastics under Anaerobic Conditions: A Short Review. Polymers. 2020; 12(1):109. https://doi.org/10.3390/polym12010109
Chicago/Turabian StyleQuecholac-Piña, Xochitl, María del Consuelo Hernández-Berriel, María del Consuelo Mañón-Salas, Rosa María Espinosa-Valdemar, and Alethia Vázquez-Morillas. 2020. "Degradation of Plastics under Anaerobic Conditions: A Short Review" Polymers 12, no. 1: 109. https://doi.org/10.3390/polym12010109
APA StyleQuecholac-Piña, X., Hernández-Berriel, M. d. C., Mañón-Salas, M. d. C., Espinosa-Valdemar, R. M., & Vázquez-Morillas, A. (2020). Degradation of Plastics under Anaerobic Conditions: A Short Review. Polymers, 12(1), 109. https://doi.org/10.3390/polym12010109