Mn/Ce Oxides Decorated Polyphenylene Sulfide Needle-Punching Fibrous Felts for Dust Removal and Denitration Application
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Catalyst Loading Methods
2.3. Catalyst Loading Rate and Fastness Characterization
2.4. Denitration Measurement
2.5. Air Permeability and Filtration Characterization
2.6. Other Characterization Methods
3. Results and Discussion
3.1. Catalyst Loading Efficiency and Stability
3.2. Morphology and Elemental Analysis
3.3. Surface Area and Pore Diameter Analysis
3.4. Mechanical Property
3.5. Filtration Property and Air Permeability
3.6. Denitration Mechanism and Performance
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Li, J.; Wang, J. Comprehensive utilization and environmental risks of coal gangue: A review. J. Clean. Prod. 2019, 239. [Google Scholar] [CrossRef]
- Zhu, W.; Wang, M.; Zhang, B. The effects of urbanization on PM2.5 concentrations in China’s Yangtze River Economic Belt: New evidence from spatial econometric analysis. J. Clean. Prod. 2019, 239. [Google Scholar] [CrossRef]
- Jaworek, A.; Sobczyk, A.T.; Krupa, A.; Marchewicz, A.; Czech, T.; Sliwinski, L. Hybrid electrostatic filtration systems for fly ash particles emission control. A review. Sep. Purif. Technol. 2019, 213, 283–302. [Google Scholar] [CrossRef]
- Wang, H.; Wang, D.; Lu, X.; Gao, Q.; Ren, W.; Zhang, Y. Experimental investigations on the performance of a new design of foaming agent adding device used for dust control in underground coal mines. J. Loss Prev. Process Ind. 2012, 25, 1075–1084. [Google Scholar] [CrossRef]
- Wang, H.; Jiang, D.; Wang, Q. Study on Application and issues of bag dedusters in coal-fired power plants. In Proceedings of the 2nd International Conference on Manufacturing Science and Engineering, Guilin, China, 9–11 April 2011; pp. 2634–2644. [Google Scholar]
- Wang, H.; Jiang, D.; Liu, Y. Life problem analysis on PPS filter application of bag dedusters in coal-fired power plants. In Proceedings of the International Conference on Chemical Engineering and Advanced Materials, Changsha, China, 28–30 May 2011; pp. 2464–2470. [Google Scholar]
- Ko, A.; Woo, Y.; Jang, J.; Jung, Y.; Pyo, Y.; Jo, H.; Lim, O.; Lee, Y.J. Availability of NH3 adsorption in vanadium-based SCR for reducing NOx emission and NH3 slip. J. Ind. Eng. Chem. 2019, 78, 433–439. [Google Scholar] [CrossRef]
- Fang, D.; He, F.; Liu, X.; Qi, K.; Xie, J.; Li, F.; Yu, C. Low temperature NH3-SCR of NO over an unexpected Mn-based catalyst: Promotional effect of Mg doping. Appl. Surf. Sci. 2018, 427, 45–55. [Google Scholar] [CrossRef]
- Liu, Q.; Liu, Z.; Li, C. Adsorption and activation of NH3 during selective catalytic reduction of NO by NH3. Chin. J. Catal. 2006, 27, 636–646. [Google Scholar] [CrossRef]
- Wang, R.; Hao, Z.; Li, Y.; Liu, G.; Zhang, H.; Wang, H.; Xia, Y.; Zhan, S. Relationship between structure and performance of a novel highly dispersed MnOx on Co-Al layered double oxide for low temperature NH3-SCR. Appl. Catal. B-Environ. 2019, 258. [Google Scholar] [CrossRef]
- Sun, H.; Liu, Z.; Wang, Y.; Quan, X.; Zhao, G. Novel metal-organic framework supported manganese oxides for the selective catalytic reduction of NOx with NH3: Promotional role of the support. J. Hazard. Mater. 2019, 380, 120800. [Google Scholar] [CrossRef]
- Yan, Z.; Yang, J.; Ge, X.; Yu, J.; Wei, L.; Yang, T.; He, B.; Wang, X.; Liu, L. Manganese oxide catalysts supported on zinc oxide nanorod arrays: A new composite for selective catalytic reduction of NOx with NH3 at low temperature. Appl. Surf. Sci. 2019, 491, 579–589. [Google Scholar] [CrossRef]
- Wu, B.J.; Liu, X.Q.; Xiao, P.; Wang, S.G. TiO2-Supported Binary Metal Oxide Catalysts for Low-temperature Selective Catalytic Reduction of NOx with NH3. Chem. Res. Chin. Univ. 2008, 24, 615–619. [Google Scholar] [CrossRef]
- Liu, H.; Wei, L.; Yue, R.; Chen, Y. CrOx-CeO2 binary oxide as a superior catalyst for NO reduction with NH3 at low temperature in presence of CO. Catal. Commun. 2010, 11, 829–833. [Google Scholar] [CrossRef]
- Reddy, B.M.; Khan, A.; Yamada, Y.; Kobayashi, T.; Loridant, S.; Volta, J.C. Structural characterization of CeO2-TiO2 and V2O5/CeO2-TiO2 catalysts by Raman and XPS techniques. J. Phys. Chem. B 2003, 107, 5162–5167. [Google Scholar] [CrossRef]
- Maitarad, P.; Zhang, D.; Gao, R.; Shi, L.; Li, H.; Huang, L.; Rungrotmongkol, T.; Zhang, J. Combination of Experimental and Theoretical Investigations of MnOx/Ce0.9Zr0.1O2 Nanorods for Selective Catalytic Reduction of NO with Ammonia. J. Phys. Chem. C 2013, 117, 9999–10006. [Google Scholar] [CrossRef]
- Si, Z.; Weng, D.; Wu, X.; Jiang, Y. Roles of Lewis and Bronsted acid sites in NO reduction with ammonia on CeO2-ZrO2-NiO-SO42- catalyst. J. Rare Earths 2010, 28, 727–731. [Google Scholar] [CrossRef]
- Ding, J.; Zhong, Q.; Zhang, S.; Song, F.; Bu, Y. Simultaneous removal of NOX and SO2 from coal-fired flue gas by catalytic oxidation-removal process with H2O2. Chem. Eng. J. 2014, 243, 176–182. [Google Scholar] [CrossRef]
- Liu, X.; Wang, C.; Zhu, T.; Lv, Q.; Li, Y.; Che, D. Simultaneous removal of NOx and SO2 from coal-fired flue gas based on the catalytic decomposition of H2O2 over Fe-2(MoO4)(3). Chem. Eng. J. 2019, 371, 486–499. [Google Scholar] [CrossRef]
- Lu, D.; Mai, Y.W.; Li, R.K.Y.; Ye, L. Impact strength and crystallization behavior of nano-SiOx/poly(phenylene sulfide) (PPS) composites with heat-treated PPS. Macromol. Mater. Eng. 2003, 288, 693–698. [Google Scholar] [CrossRef]
- Zuo, P.; Tcharkhtchi, A.; Shirinbayan, M.; Fitoussi, J.; Bakir, F. Overall Investigation of Poly (Phenylene Sulfide) from Synthesis and Process to ApplicationsA Review. Macromol. Mater. Eng. 2019, 304. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, F.; Ulker, Z.; Erkey, C. A novel composite of alginate aerogel with PET nonwoven with enhanced thermal resistance. J. Non-Cryst. Solids 2018, 491, 7–13. [Google Scholar] [CrossRef]
- Liu, S.; Liu, D.; Sun, Z.; Zhang, Y.; Zhao, C.; Wei, L. The study to the removal of copper(II) ions by sodium alginate loaded with HFO gel spheres. J. Funct. Mater. 2019, 50, 136–140. [Google Scholar]
- Huang, D.; Wang, W.; Wang, A. Removal of Cu2+ and Zn2+ Ions from Aqueous Solution Using Sodium Alginate and Attapulgite Composite Hydrogels. Adsorpt. Sci. Technol. 2013, 31, 611–623. [Google Scholar] [CrossRef]
- Saeidi, N.; Parvini, M.; Niavarani, Z. High surface area and mesoporous graphene/activated carbon composite for adsorption of Pb(II) from wastewater. J. Environ. Chem. Eng. 2015, 3, 2697–2706. [Google Scholar] [CrossRef]
- Li, R.Z.; Ye, L.; Mai, Y.W. Application of plasma technologies in fibre-reinforced polymer composites: A review of recent developments. Compos. Part A-Appl. Sci. Manuf. 1997, 28, 73–86. [Google Scholar] [CrossRef]
- Shahidi, S.; Ghoranneviss, M.; Moazzenchi, B. New Advances in Plasma Technology for Textile. J. Fusion Energy 2014, 33, 97–102. [Google Scholar] [CrossRef]
- Zhang, H.J.; Zhang, Z.Z.; Guo, F. Effects of air plasma treatment on tribological properties of hybrid PTFE/Kevlar fabric composite. J. Appl. Polym. Sci. 2009, 114, 3980–3986. [Google Scholar] [CrossRef]
- Jia, C.; Chen, P.; Liu, W.; Li, B.; Wang, Q. Surface treatment of aramid fiber by air dielectric barrier discharge plasma at atmospheric pressure. Appl. Surf. Sci. 2011, 257, 4165–4170. [Google Scholar] [CrossRef]
- Zhang, C.; Li, C.; Wang, B.; Wang, B.; Cui, H. Effects of atmospheric air plasma treatment on interfacial properties of PBO fiber reinforced composites. Appl. Surf. Sci. 2013, 276, 190–197. [Google Scholar] [CrossRef]
- Hong, R.; Xu, D.; Wang, X.; Long, S.; Zhang, G.; Yang, J. Effect of air dielectric barrier discharge plasma treatment on the adhesion property of sanded polyphenylene sulfide. High Perform. Polym. 2016, 28, 641–650. [Google Scholar] [CrossRef]
- Millo, F.; Rafigh, M.; Fino, D.; Miceli, P. Application of a global kinetic model on an SCR coated on Filter (SCR-F) catalyst for automotive applications. Fuel 2017, 198, 183–192. [Google Scholar] [CrossRef]
- Fang, Q.; Zhu, B.; Sun, Y.; Song, W.; Xie, C.; Xu, M. Adsorption mechanism of NH3, NO, and O-2 molecules over MnxOy/Ni (111) surface: A density functional theory study. J. Mater. Sci. 2019, 54, 14414–14430. [Google Scholar] [CrossRef]
- Lian, Z.; Liu, F.; He, H.; Shi, X.; Mo, J.; Wu, Z. Manganese-niobium mixed oxide catalyst for the selective catalytic reduction of NOx with NH3 at low temperatures. Chem. Eng. J. 2014, 250, 390–398. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, P.; Wu, X.; Lv, S.; Dai, J. Application of MnOx/HNTs catalysts in low-temperature NO reduction with NH3. Catal. Commun. 2016, 83, 18–21. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; He, H.; Wu, S.; Ning, X.; Chen, F.; Lv, Y.; Yu, J.; Zhou, R. Mn/Ce Oxides Decorated Polyphenylene Sulfide Needle-Punching Fibrous Felts for Dust Removal and Denitration Application. Polymers 2020, 12, 168. https://doi.org/10.3390/polym12010168
Chen Y, He H, Wu S, Ning X, Chen F, Lv Y, Yu J, Zhou R. Mn/Ce Oxides Decorated Polyphenylene Sulfide Needle-Punching Fibrous Felts for Dust Removal and Denitration Application. Polymers. 2020; 12(1):168. https://doi.org/10.3390/polym12010168
Chicago/Turabian StyleChen, Ying, Hongwei He, Shaohua Wu, Xin Ning, Fuxing Chen, Yanru Lv, Juan Yu, and Rong Zhou. 2020. "Mn/Ce Oxides Decorated Polyphenylene Sulfide Needle-Punching Fibrous Felts for Dust Removal and Denitration Application" Polymers 12, no. 1: 168. https://doi.org/10.3390/polym12010168